cho tam giác abc vuông cân tại a có ab>ac trên cạnh ba lấy điểm d sao cho bd=ác trên đường vuông góc với ab tại b lấy điểm f sao cho bf=ad chứng minh rằng tam giác bdf=tam giác acd và chứng minh rằng tam giác cdf là tam giác vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét Δ BDF và Δ ACD có: góc B = góc A ( vì cùng bằng 900 )
BF = AD ( vì cùng bằng CE )
BD = AC ( gt )
Nên Δ BDF = Δ ACD (c.g.c)
b) Vì Δ BDF =Δ ACD (cmt) → DF = DC ( hai cạnh tương ứng ) (1)
và góc ACD = góc BDF ( hai góc tương ứng )
Ta có: góc ADC = 1800 - góc A - góc ACD ( tổng 3 góc của tam giác)
và góc ADC = 1800 - góc FDC - góc BDF ( kề bù )
Mà : góc ACD = góc BDF ( cmt) → góc FDC = góc A = 900 (2)
Từ (1) và (2) , ta có: DF = CD và góc FDC = 900
→ tam giác CDF là tam giác vuông cân
P/s: Đây là lần đầu tiên mình làm toán trên HOC24 nên có gì sai sót, mong các bạn bỏ qua!
Bạn tự vẽ hình nha
AED + DEC = 180
mà DEC = AEF (tam giác AFE = tam giác DCE)
=> AED + AEF = 180
=> EF và ED là 2 tia đối
=> D , E , F thẳng hàng
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
a: Xét ΔDAB và ΔDEB có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔDAB=ΔDEB
=>góc DEB=90 độ
=>DE vuông góc BC
b: AD=DE
mà DE<DC
nên AD<DC
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC