Cho 2 số thực x , y thỏa mãn
Tìm GTNN của M =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM:
$M\geq 2\sqrt{\frac{1}{xy}}.\sqrt{1+x^2y^2}=2\sqrt{\frac{x^2y^2+1}{xy}}$
$=2\sqrt{xy+\frac{1}{xy}}$
Áp dụng BĐT AM-GM tiếp:
$1\geq x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$
$xy+\frac{1}{xy}=(xy+\frac{1}{16xy})+\frac{15}{16xy}$
$\geq 2\sqrt{xy.\frac{1}{16xy}}+\frac{15}{16xy}$
$\geq 2\sqrt{\frac{1}{16}}+\frac{15}{16.\frac{1}{4}}=\frac{17}{4}$
$\Rightarrow M\geq 2\sqrt{\frac{17}{4}}=\sqrt{17}$
Vậy $M_{\min}=\sqrt{17}$. Giá trị này đạt tại $x=y=\frac{1}{2}$
\(Q=\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy\)
\(Q=8-6xy+4-2xy=12-8xy\)
\(Q=12-8x\left(2-x\right)=12-16x+8x^2=8\left(x-1\right)^2+4\ge4\)
\(Q_{min}=4\) khi \(x=y=1\)
\(\Rightarrow x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
\(\Rightarrow1\ge2xy\)
\(\Rightarrow\frac{1}{2}\ge xy\)
Có \(x+y\ge2\sqrt{xy}\ge2\sqrt{\frac{1}{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Vậy \(Min_{x+y}=\sqrt{2}\)
Làm tương tự với max
Thêm đk: x,y>0
Tìm max:
Áp dụng BĐT bunhiacopxki ta có:
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow2\ge\left(x+y\right)^2\)
\(\Leftrightarrow\sqrt{2}\ge x+y\)
Dấu " = " xảy ra <=> x=y
KL:...............................
We have : \(A=x+y+\dfrac{1}{2x}+\dfrac{2}{y}=\dfrac{x+y}{2}+\left(\dfrac{y}{2}+\dfrac{2}{y}\right)+\left(\dfrac{1}{2x}+\dfrac{x}{2}\right)\)
\(Applying\) C-S we have : \(\dfrac{y}{2}+\dfrac{2}{y}\ge2;\dfrac{1}{2x}+\dfrac{x}{2}\ge1\)
x + y \(\ge3\) \(\Rightarrow\dfrac{x+y}{2}\ge\dfrac{3}{2}\)
So : \(A\ge\dfrac{3}{2}+2+1=\dfrac{9}{2}\)
" = " \(\Leftrightarrow x=1;y=2\)
\(x\ge2y\Rightarrow\dfrac{x}{y}\ge2\)
\(M=\dfrac{x}{y}+\dfrac{y}{x}=\dfrac{x}{4y}+\dfrac{y}{x}+\dfrac{3}{4}.\dfrac{x}{y}\ge2\sqrt{\dfrac{xy}{4xy}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)
\(M_{min}=\dfrac{5}{2}\) khi \(x=2y\)
Vì
Áp dụng bất đẳng thức Cô – si đối với hai số ta được:
Vì 0 < x < 1 ⇒ 1 - x > 0
Áp dụng bất đẳng thức Cô – si đối với hai số ta được:
Dấu “ = ” xảy khi và chỉ khi
Vậy giá trị nhỏ nhất của hàm số bằng 4 tại x = 1/2
Lời giải:
Bài 1:
\((x+\sqrt{x^2+2016})(y+\sqrt{y^2+2016})=2016(\star)\)
\(\Leftrightarrow (x+\sqrt{x^2+2016})(x-\sqrt{x^2+2016})(y+\sqrt{y^2+2016})=2016(x-\sqrt{x^2+2016})\)
\(\Leftrightarrow -2016(y+\sqrt{y^2+2016})=2016(x-\sqrt{x^2+2016})\)
\(\Leftrightarrow y+\sqrt{y^2+2016}=\sqrt{x^2+2016}-x(1)\)
Tương tự nhưng nhân \(y-\sqrt{y^2+2016}\) vào PT \((\star)\)
\(\Rightarrow x+\sqrt{x^2+2016}=\sqrt{y^2+2016}-y(2)\)
Từ \((1),(2)\Rightarrow x=-y\)
\(\Rightarrow (x+\sqrt{x^2+2016})(\sqrt{x^2+2016}-x)=2016\Leftrightarrow 2016=2016\) ( luôn đúng)
Vậy PT có nghiệm \((x,y)=(x,-x)\) với \(x\in\mathbb{R}\)
Bài 2:
Do \((3x^2-2)^2,y^4,y^2\geq 0\) với mọi \(x,y\in\mathbb{R}\) nên:
Ta có \(M=9x^4+7y^4-12x^2+4y^2+5=(3x^2-2)^2+7y^4+4y^2+1\geq 1\)
Vậy \(M_{\min}=1\Leftrightarrow (x,y)=\left(\pm\sqrt{\frac{2}{3}},0\right)\)