dùng lũy thừa để viết gọn biểu thức 2^3.8^4+9^9:3^6 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 53 . 52 . 5
= 55 . 5
= 55 . 51
= 56
b) 69 : 64
= 65
c) 4 . 8 . 16 . 32
= 22 . 23 . 24 . 25
= 25 . 24 . 25
= 29 . 25
= 214
`@` `\text {Ans}`
`\downarrow`
\(7\cdot35\cdot7\cdot25\)
`=`\(7^2\cdot7\cdot5\cdot5^2\)
`=`\(7^3\cdot5^3=\left(7\cdot5\right)^3=35^3\)
1) \(12\cdot12\cdot2\cdot12\cdot6=12\cdot12\cdot12\cdot12=12^4\)
2) \(25\cdot5\cdot4\cdot2\cdot10=\left(25\cdot4\right)\cdot\left(5\cdot2\cdot10\right)=100\cdot100=100^2=10^4\)
3) \(2\cdot10\cdot10\cdot3\cdot5\cdot10=3\cdot10\cdot10\cdot10\cdot10=3\cdot10^4\)
4) \(a\cdot a\cdot a+b\cdot b\cdot b\cdot b=a^3+b^4\)
Viết gọn các biểu thức sau bằng cách dùng lũy thừa
1) 12.12.2.12.6
=> 12 . 12 . 12 . (2 . 6)
= 12 . 12 . 12 . 12 . 12 = 125
2) 25.5.4.2.10
=> ( 25 . 4 ) . ( 2 . 5 . 10 )
= 100 . 100 = 1002
3) 2.10.10.3.5.10
=> ( 2 . 5 ) . 10 . 10 . 10 . 3
= 10 . 10 . 10 . 10 . 3 = 104 . 3
4) a.a.a cộng b.b.b.b
=> a3 + b4
1
a) 2x + 3 (đã rút gọn)
b) 5(6 - x^4) = 30 - 5x^4
c) 12(4x + 4)12 = 48x + 48
d) 7x . 8x - 9x - 9 = 56x^2 - 9x - 9
e) 8 - x^3 (đã rút gọn)
f) 6x + 8x . 1 = 6x + 8x = 14x
g) 9 . 10x - 8 + 7 = 90x - 8 + 7 = 90x - 1
h) 7x + 9 + 8x - 1 = 15x + 8
2
a) 2^10 : 8^2 = (2^10) / (8^2) = (2^10) / (2^6) = 2^(10-6) = 2^4 = 16
b) 125 : 5^2 = 125 / (5^2) = 125 / 25 = 5
c) 64^2 : 2^3 . 8^7 = (64^2) / (2^3 . 8^7) = (2^6)^2 / (2^3 . (2^3)^7) = 2^12 / (2^3 . 2^21) = 2^(12 - 3 - 21) = 2^(-12)
d) 3^4 : 9 = 81 / 9 = 9
e) 8^2 . 4^2 = (8^2) . (4^2) = 64 . 16 = 1024 f) 5^2 . 10^2 : 5^2 = (5^2) . (10^2) / (5^2) = 100 / 1 = 100
3
A) Để tìm ƯC(12; 136) có thể chuyển sang lũy thừa, ta phân tích 12 và 136 thành các thừa số nguyên tố: 12 = 2^2 * 3 136 = 2^3 * 17 ƯC(12; 136) = 2^2 = 4
B) Để tìm ƯC(25; 300) với điều kiện ƯC chia hết cho 3 và 9, ta phân tích 25 và 300 thành các thừa số nguyên tố: 25 = 5^2 300 = 2^2 * 3 * 5^2 ƯC(25; 300) = 5^2 = 25 (vì 25 chia hết cho 3 và 9)
C) Để tìm BC(17; 221) với điều kiện là số lẻ và là hợp số, ta phân tích 17 và 221 thành các thừa số nguyên tố: 17 = 17^1 221 = 13 * 17 BC(17; 221) = 17 (vì 17 là số lẻ và là hợp số)
D) Để tìm BC(10; 15) với điều kiện ƯC < 150 và là số nguyên tố, ta phân tích 10 và 15 thành các thừa số nguyên tố: 10 = 2 * 5 15 = 3 * 5 BC(10; 15) = 5 (vì 5 là số nguyên tố và ƯC < 150)
4
a) Để tính S, ta có thể nhận thấy rằng các số mũ của 4 tăng dần từ 2 đến 99. Vậy ta có thể viết lại S như sau: S = 1 * 4^2 * 4^3 * 4^4 * ... * 4^98 * 4^99 = 4^(2 + 3 + 4 + ... + 98 + 99) = 4^(2 + 3 + 4 + ... + 99 + 100 - 1) = 4^(1 + 2 + 3 + ... + 100 - 1) = 4^(100 * 101 / 2 - 1) = 4^(5050 - 1) = 4^5049
b) Để chứng minh rằng S chia hết cho 1024, ta cần chứng minh rằng S chia hết cho 2^10 = 1024. Ta có: S = 4^5049 = (2^2)^5049 = 2^(2 * 5049) = 2^10098 Ta thấy rằng 10098 chia hết cho 10 (vì 10098 = 1009 * 10), nên ta có thể viết lại S như sau: S = 2^(2 * 5049) = 2^(2 * 1009 * 10) = (2^10)^1009 = 1024^1009 Vậy S chia hết cho 1024.
5
a) Để xác định thời điểm người đi ô tô bắt kịp bác An, ta cần tính thời gian mà cả hai đã đi. Thời gian mà bác An đã đi: t1 = quãng đường / vận tốc = 60 km / 40 km/h = 1.5 giờ Thời gian mà người đi ô tô đã đi: t2 = quãng đường / vận tốc = 60 km / 80 km/h = 0.75 giờ Vì người đi ô tô đã xuất phát sau bác An, nên thời gian mà người đi ô tô bắt kịp bác An sẽ là thời gian mà cả hai đã đi cộng thêm thời gian nghỉ của bác An: t = t1 + t2 + 15 phút = 1.5 giờ + 0.75 giờ + 15 phút = 2.25 giờ + 0.25 giờ = 2.5 giờ Vậy, người đi ô tô sẽ bắt kịp bác An sau 2.5 giờ.
b) Để tính quãng đường từ A đến B, ta chỉ cần tính tổng quãng đường mà cả hai đã đi: quãng đường từ A đến B = quãng đường của bác An + quãng đường của người đi ô tô = 60 km + 60 km = 120 km Vậy, quãng đường từ A đến B là 120 km.
23.84+99:36