K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\dfrac{2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}\)

\(=\dfrac{\sqrt{10}\left(2+\sqrt{3}\right)-\sqrt{2}\left(2+\sqrt{3}\right)}{2\sqrt{2}\left(\sqrt{5}-1\right)}\)

\(=\dfrac{\sqrt{2}\left(2+\sqrt{3}\right)\left(\sqrt{5}-1\right)}{2\sqrt{2}\left(\sqrt{5}-1\right)}\)

\(=\dfrac{2+\sqrt{3}}{2}\)

b) Ta có: \(\sqrt{\left(1-\sqrt{2006}\right)^2}\cdot\sqrt{2007+2\sqrt{2006}}\)

\(=\left(\sqrt{2006}-1\right)\left(\sqrt{2006}+1\right)\)

=2005

11 tháng 9 2020

\(E=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\sqrt{\left(4+\sqrt{15}\right)^2}.\sqrt{\left(\sqrt{10}-\sqrt{6}\right)^2}.\frac{4^2-15}{\sqrt{4+\sqrt{15}}}\)

\(=\sqrt{4+\sqrt{15}}.\sqrt{10+6-2\sqrt{10}.\sqrt{6}}\)

\(=\sqrt{4+\sqrt{15}}.\sqrt{16-2\sqrt{60}}\)

\(=\sqrt{4+\sqrt{15}}.\sqrt{4\left(4-\sqrt{15}\right)}\)

\(=2\sqrt{\left(4+\sqrt{15}\right).\left(4-\sqrt{15}\right)}\)

\(=2\sqrt{16-15}=2\)

AH
Akai Haruma
Giáo viên
11 tháng 10 2023

 Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề hơn nhé. 

21 tháng 7 2019

\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)

\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)

\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)

21 tháng 7 2019

b) vì \(\sqrt{5}-\sqrt{12}< 0\), ta có: 

 \(5\sqrt{5}-2\sqrt{3}=4\sqrt{5}+\sqrt{5}-\sqrt{12}< 4\sqrt{5}< 4\sqrt{5}+6\) 

Vậy \(5\sqrt{5}-2\sqrt{3}< 6+4\sqrt{5}\)

29 tháng 7 2021

a) \(\left(\sqrt{\dfrac{9}{20}}-\sqrt{\dfrac{1}{2}}\right).\sqrt{2}=\sqrt{\dfrac{9}{20}.2}-\sqrt{\dfrac{1}{2}.2}=\sqrt{\dfrac{9}{10}}-1=\dfrac{3}{\sqrt{10}}-1\)

\(=\dfrac{3\sqrt{10}}{10}-1\)

b) \(\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right)\sqrt{3}=\sqrt{12.3}+\sqrt{27.3}-\sqrt{3.3}\)

\(=\sqrt{36}+\sqrt{81}-\sqrt{9}=6+9-3=12\)

c) \(\left(\sqrt{\dfrac{8}{3}}-\sqrt{24}+\sqrt{\dfrac{50}{3}}\right)\sqrt{6}=\sqrt{\dfrac{8}{3}.6}-\sqrt{24.6}+\sqrt{\dfrac{50}{3}.6}\)

\(=\sqrt{16}-\sqrt{144}+\sqrt{100}=4-12+10=2\)