Cho x,y,z>0. Tìm min: P=\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)
Dấu "=" xảy ra khi \(x=y=z\)
Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
Tương tự thay vào mà quy đồng
a) Áp dụng bất đẳng thức Cauchy-Schwarz , ta được
\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=1\)(đpcm)
Áp dụng bất đẳng thức Cauchy , ta có :
\(x+y+z\ge3\sqrt[3]{xyz}\)
<=> \(xyz\ge3\sqrt[3]{xyz}\)
<=> \(x^3y^3z^3\ge27xyz\)
<=> \(x^2y^2z^2\ge27\)
<=> \(\sqrt[3]{x^2y^2z^2}\ge3\)
Ta có
\(P=\frac{1}{x^2+yz+yz}+\frac{1}{y^2+zx+zx}+\frac{1}{z^2+xy+xy}\le\frac{1}{3\sqrt[3]{x^2y^2z^2}}+\frac{1}{3\sqrt[3]{x^2y^2z^2}}+\frac{1}{3\sqrt[3]{x^2y^2z^2}}\)
\(=\frac{1}{\sqrt[3]{x^2y^2z^2}}\le\frac{1}{3}\)
Vậy Max = 1/3
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0< =>\frac{xy}{xyz}+\frac{yz}{xyz}+\frac{zx}{xyz}=0< =>xy+yz+zx=0\)
Khi đó : \(x^2+2yz=x^2+2yz-xy-yz-zx=x^2-xy+yz-zx=\left(x-z\right)\left(x-y\right)\)
Bằng phép chứng minh tương tự ta được : \(y^2+2xz=\left(y-x\right)\left(y-z\right);z^2+2xy=\left(z-x\right)\left(z-y\right)\)
Đặt \(A=\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}=\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)
\(< =>-A=\frac{x^2}{\left(x-y\right)\left(z-x\right)}+\frac{y^2}{\left(x-y\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(y-z\right)}\)
\(=\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=...\)đến đây nhân tung rồi ghép cặp sẽ ra kq = 1 thì phải
làm luôn đỡ lòng vòng :(
\(=\frac{x^2\left(y-z\right)+y^2z-y^2x+z^2x-z^2y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{x^2\left(y-z\right)+zy\left(y-z\right)-x\left(y^2-z^2\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{x^2\left(y-z\right)+zy\left(y-z\right)-x\left(y-z\right)\left(y+z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(y-z\right)\left(x^2+zy-xy-xz\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{\left(y-z\right)\left[x\left(x-y\right)-z\left(x-y\right)\right]}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(y-z\right)\left(x-y\right)\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=-1\)
\(< =>-A=-1< =>A=1\)
Áp dụng bdt Cauchy - Schwarz dạng phân thức ta có :
\(P=\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2yz+2xz+2xy}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
áp dụng bđt bunhia dạng phân thức ta có
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\)≥\(\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\) =\(\frac{3^2}{\left(x+y+z\right)^2}\)=\(\frac{9}{1^2}\) =9
(đpcm) vậy dấu =xảy ra khi x=y=z=\(\frac{1}{3}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\right)[(x^2+2yz)+(y^2+2xz)+(z^2+2xy)]\geq (1+1+1)^2\)
\(\Leftrightarrow \frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\geq \frac{9}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{(x+y+z)^2}=\frac{9}{3^2}=1\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$
Sửa đề: cho x,y,z dương. CMR \(\frac{x^3+y^3}{2xy}+\frac{y^3+z^3}{2yz}+\frac{z^3+x^2}{2xz}\ge x+y+z\)
Áp dụng BĐT AM-GM ta có:
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\ge\left(x+y\right)\left(2\sqrt{x^2y^2}-xy\right)\)
\(=\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)
\(\Rightarrow\frac{x^3+y^3}{2xy}\ge\frac{xy\left(x+y\right)}{2xy}=\frac{x+y}{2}\)
Tương tự cho 2 BĐT còn lại ta có:
\(\frac{y^3+z^3}{2yz}\ge\frac{y+z}{2};\frac{z^3+x^3}{2xz}\ge\frac{x+z}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\frac{2\left(x+y+z\right)}{2}=x+y+z=VP\)
Đẳng thức xảy ra khi \(x=y=z\)
Đề sai rồi. Không cho x, y, z dương hay không là đã sai rồi. Giả sử đã cho dương rồi thì vẫn sai.
Thế \(x=y=z=2\) vào thì ta được
\(\frac{2^2+2^2}{2.2.2}+\frac{2^2+2^2}{2.2.2}+\frac{2^2+2^2}{2.2.2}\ge2+2+2\)
\(\Leftrightarrow3\ge6\) sai.
Cách khác:
Áp dụng BĐT AM-GM ta có:
\(2yz\le y^2+z^2\Rightarrow x^2+2yz\le x^2+y^2+z^2\)
\(\Rightarrow\frac{x^2}{x^2+2yz}\ge\frac{x^2}{x^2+y^2+z^2}\). Tương tự ta cũng có: \(\left\{\begin{matrix}\frac{y^2}{y^2+2xz}\ge\frac{y^2}{x^2+y^2+z^2}\\\frac{z^2}{z^2+2xy}\ge\frac{z^2}{x^2+y^2+z^2}\end{matrix}\right.\)
Cộng theo vế rồi thu gọn ta cũng được \(P_{Min}=1\)
Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:
P = \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\)\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}=1\)
Dau "=" xay ra khi x = y = z