cho tam giac abc can tai a tren tia doi cua ac lay ad=ac tam giac abd la tam giac gi chung minh goc dbc= goc bdc+ goc dcb
các bn giải hộ t t cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a) \(\Delta ABC\)cân tại A\(\Rightarrow AB=AC\).Mà \(AD=AC\Rightarrow AB=AD\)
Xét \(\Delta ABD\)có \(AB=AD\Rightarrow\Delta ABD\)cân tại A
b)Có \(\widehat{ABC}=\widehat{ACB}\left(1\right)\)( do \(\Delta ABC\)cân)
\(\widehat{ABD}=\widehat{ADB}\left(2\right)\)( do \(\Delta ABD\)cân )
Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{ABC}+\widehat{ABD}=\widehat{ACB}+\widehat{ADB}\)
\(\Rightarrow\widehat{DBC}=\widehat{ACB}+\widehat{ADB}\)hay \(\widehat{DBC}=\widehat{DCB}+\widehat{BDC}\left(dpcm\right)\)
2.
a)Nối A vs C
có\(OA=0C;AB=CD\Rightarrow OA+AB=OC+CD\)
hay \(OB=OD\).Xét \(\Delta OBD\)có \(OB=OD\Rightarrow\Delta OBD\)cân tại O
b) Xét \(\Delta OAD\)và \(\Delta OCB\)có:
\(OA=OB\left(gt\right)\)
\(\widehat{AOB}:chung\)
\(OB=OD\left(cmt\right)\)
\(\Rightarrow\Delta OAD=\Delta OCB\left(c.g.c\right)\Rightarrow AD=CB\left(dpcm\right)\)
c)Có \(\Delta OAD=\Delta OCB\Rightarrow\widehat{ADO}=\widehat{CBO}\)
Xét \(\Delta ACD\)và \(\Delta CBA\)có: \(AD=CD\)
\(\widehat{ADO}=\widehat{CBO}\)
\(CD=BA\)
\(\Rightarrow\Delta ACD=\Delta CBA\left(c.g.c\right)\Rightarrow\widehat{CAD}=\widehat{BCA}\Rightarrow\Delta IAC\)cân tại I
Làm tương tự bạn => tam giác IBD cân tại I ( tam giác ADB = tam giác CBD => Góc ADB= góc CBD)
a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )
Tự vẽ hình được ko? Mình ko làm được phần c đâu nhé!
a) Xét \(\Delta AMBvà\Delta CMDcó:\)
AM=MC
góc AMB=góc DMC
BM=MD
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Xét \(\Delta ADMvà\Delta BMCcó:\)
AM=MC
góc AMD=góc DMC
BM=MD
\(\Rightarrow\Delta ADM=\Delta CBM\left(c-g-c\right)\)
\(\Rightarrow\)góc DAM=góc BCM (cặp góc tương ứng)
Mà 2 góc này ở vị trí so le trong nên AD//BC
Hình đơn giản rồi nên em tự kẻ ra nhé!
a, Xét ΔABD và ΔACE có:
\(\widehat{AEC}\)=\(\widehat{ABD=90^o}\)(giả thiết)
AB=AC(2 cạnh bên Δ cân ABC)
\(\widehat{A}\) chung
=>ΔABD=ΔACE(g.c.g)(đpcm)
b, Vì AE=AD
và HE=HD
=>AH là đường trung trực của ED(đpcm)
c, Xét ΔDKC và ΔDBC có:
\(\widehat{BDC}\)=\(\widehat{KDC}\)=90o(gt)
BD=KD(gt)
DC là cạnh chung
=>ΔDKC=ΔDBC(c.g.c)
DBC=DKC(2 cạnh tương ứng) (1)
BH=CH
=>ΔHBC cân tại H
=>DBC=ECB(2 góc ở đáy Δ cân) (2)
Từ (1) và (2)=>ECB=DKC(đpcm)
Đây là mới làm theo đề trên câu hỏi thôi còn em xem lại đề nhé, hình như đề thiếu thì phải!
a: Xét ΔBAC vuông tại A và ΔBAD vuông tại A có
BA chung
AC=AD
Do đó: ΔBAC=ΔBAD
=>góc CBA=góc DBA
=>BA là phân giác của góc CBD
b: Xét ΔMDC có
MA vừa là đường cao, vừa là trungtuyến
nên ΔMDC cân tại M
Xét ΔMBD và ΔMBC có
MB chung
BD=BC
MD=MC
Do đó: ΔMBD=ΔMBC
a) \(\Delta ADB\) là tam giác cân tại A vì
\(\Delta\) ABC cân tại A nên:
AB=AC
Mà AD=AC
=> AD=AB
Vậy \(\Delta ADB\) là tam giác cân tại A
b)\(\Delta ADB\) cân tại A nên
\(\widehat{ADB}=\widehat{ABD}\) (1)
\(\Delta\) ABC cân tại A nên
\(\widehat{ABC}=\widehat{ACB}\) (2)
Mà \(\widehat{DBC}=\widehat{DBA}+\widehat{ABC}\)
Nên \(\widehat{DBC}=\widehat{BDA}+\widehat{BCA}\) (theo1 và 2)
Vậy \(\widehat{DBC}=\widehat{BDA}+\widehat{BCA}\)