Khi đa thức f(x) chia cho x+2 dư -4 chia cho x-3 dư 21 chia cho (x-3) (x+2) thì đc thương là x2+4 và còn dư thì hạng tử tự do của f(x) là...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì f(x) chia cho x+2 dư -4 nên f(x) + 4 chia hết cho x+2
Theo định lí Bezout thì f(-2)+4 = 0
Suy ra f(-2) = -4 (*)
Tương tự ta cũng được f(3) = 24 (**)
Vì f(x) chia cho (x-3)(x+2) được thương là x2+4 và còn dư nên
f(x) = (x-3)(x+2)(x2+4) + ax+b (***)
Từ (***) và (*) suy ra f(-2) = -2a+b = -4
Từ (***) và (**) suy ra f(3) = 3a+b = 21
Suy ra a = 5 và b = 6
Thay vào (***) rồi khai triển ta được hạng tử tự do là -18
Đảm bảo đúng 100% mình làm bài này rồi
Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)
\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)
Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)
Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)
Vì f(x) chia cho x+2 dư -4 nên f(x) + 4 chia hết cho x+2
Theo định lí Bezout thì f(-2)+4 = 0
Suy ra f(-2) = -4 (*)
Tương tự ta cũng được f(3) = 24 (**)
Vì f(x) chia cho (x-3)(x+2) được thương là x2+4 và còn dư nên
f(x) = (x-3)(x+2)(x2+4) + ax+b (***)
Từ (***) và (*) suy ra f(-2) = -2a+b = -4
Từ (***) và (**) suy ra f(3) = 3a+b = 21
Suy ra a = 5 và b = 6
Thay vào (***) rồi khai triển ta được hạng tử tự do là -18
Đảm bảo đúng 100% mình làm bài này rồi
Vì f(x) chia cho x+2 dư -4 nên f(x) + 4 chia hết cho x+2
Theo định lí Bezout thì f(-2)+4 = 0
Suy ra f(-2) = -4 (*)
Tương tự ta cũng được f(3) = 24 (**)
Vì f(x) chia cho (x-3)(x+2) được thương là x2+4 và còn dư nên
f(x) = (x-3)(x+2)(x2+4) + ax+b (***)
Từ (***) và (*) suy ra f(-2) = -2a+b = -4
Từ (***) và (**) suy ra f(3) = 3a+b = 21
Suy ra a = 5 và b = 6
Thay vào (***) rồi khai triển ta được hạng tử tự do là -18
Đảm bảo đúng 100% mình làm bài này rồi
v16 pải ko