Tính giá trị biểu thức:
A=1-2+22-23+24-25+...+22008
B:\(\left(1+\dfrac{8}{10}\right)\cdot\left(1+\dfrac{8}{22}\right)\cdot\left(1+\dfrac{8}{36}\right)\cdot...\cdot\left(1+\dfrac{8}{8532}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{99.101}{100.100}\)
\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)
\(=\dfrac{1}{100}.\dfrac{101}{2}\)
\(=\dfrac{101}{200}\)
\(D=\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)=\dfrac{4}{1.3}.\dfrac{9}{2.4}...\dfrac{2019.2021+1}{2019.2021}=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}...\dfrac{2020.2020}{2019.2021}=\left(\dfrac{2}{1}.\dfrac{3}{2}...\dfrac{2020}{2019}\right).\left(\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2020}{2021}\right)=2020.\dfrac{2}{2021}=\dfrac{4040}{2021}\)
\(\dfrac{-5}{9}+1\dfrac{5}{9}.\left(\dfrac{3}{4}-\dfrac{2}{5}\right):7^2\\ =\dfrac{-5}{9}+\dfrac{14}{9}.\left(\dfrac{3}{4}-\dfrac{2}{5}\right):49\\ =\dfrac{-5}{9}+\dfrac{14}{9}.\left(\dfrac{15}{20}-\dfrac{8}{20}\right):49\\ =\dfrac{-5}{9}+\dfrac{14}{9}.\dfrac{7}{20}:49\\ =\dfrac{-5}{9}+\dfrac{49}{90}:49\\ =\dfrac{-5}{9}+\dfrac{1}{90}\\ =\dfrac{-50}{90}+\dfrac{1}{90}\\ =\dfrac{-49}{90}\)
\(1\dfrac{13}{15}.0,75-\left(\dfrac{104}{195}+25\%\right).\dfrac{24}{47}-3\dfrac{12}{13}:3\\ =\dfrac{28}{15}.\dfrac{3}{4}-\left(\dfrac{8}{15}+\dfrac{1}{4}\right).\dfrac{24}{47}-\dfrac{51}{13}:3\\ =\dfrac{7}{5}-\left(\dfrac{32}{60}+\dfrac{15}{60}\right).\dfrac{24}{47}-\dfrac{51}{13}.\dfrac{1}{3}\\ =\dfrac{7}{5}-\dfrac{47}{60}.\dfrac{24}{47}-\dfrac{17}{13}\\ =\dfrac{7}{5}-\dfrac{2}{5}-\dfrac{17}{13}\\ =1-\dfrac{17}{13}\\ =\dfrac{13}{13}-\dfrac{17}{13}\\ =\dfrac{-4}{13}\)
\(=\dfrac{7}{8}\left(\dfrac{2}{9}-\dfrac{1}{18}+\dfrac{1}{36}-\dfrac{5}{12}\right)=\dfrac{7}{8}\cdot\dfrac{8-2+1-15}{36}\)
\(=\dfrac{7}{8}\cdot\dfrac{-8}{36}=\dfrac{-7}{36}\)
\(a.\)
\(\dfrac{17}{8}:\left(\dfrac{27}{8}+\dfrac{11}{2}\right)\)
\(=\dfrac{17}{8}:\left(\dfrac{27+44}{8}\right)=\dfrac{17}{8}:\dfrac{71}{8}=\dfrac{17}{8}\cdot\dfrac{8}{71}=\dfrac{17}{71}\)
\(b.\)
\(\dfrac{28}{15}\cdot\dfrac{1}{4^2}\cdot3+\left(\dfrac{8}{15}-\dfrac{69}{60}\cdot\dfrac{5}{23}\right):\dfrac{51}{54}\)
\(=\dfrac{28}{15}\cdot\dfrac{1}{4^2}\cdot3+\left(\dfrac{8}{15}-\dfrac{1}{4}\right):\dfrac{51}{54}\)
\(=\dfrac{28}{15}\cdot\dfrac{1}{4^2}\cdot3+\left(\dfrac{8\cdot4-15}{60}\right):\dfrac{51}{54}\)
\(=\dfrac{28}{15}\cdot\dfrac{1}{4^2}\cdot3+\dfrac{17}{60}:\dfrac{51}{54}\)
\(=\dfrac{28}{15}\cdot\dfrac{1}{16}\cdot3+\dfrac{17}{60}\cdot\dfrac{54}{51}\)
\(=\dfrac{7}{20}+\dfrac{3}{10}\)
\(=\dfrac{7+3\cdot2}{20}=\dfrac{13}{20}\)
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right).........................\left(\dfrac{1}{99}-1\right)\left(\dfrac{1}{100}-1\right)\)
\(A=\left(\dfrac{1}{2}-\dfrac{2}{2}\right)\left(\dfrac{1}{3}-\dfrac{3}{3}\right)\left(\dfrac{1}{4}-\dfrac{4}{4}\right)................\left(\dfrac{1}{99}-\dfrac{99}{99}\right)\left(\dfrac{1}{100}-\dfrac{100}{100}\right)\)
\(A=\left(\dfrac{-1}{2}\right)\left(\dfrac{-2}{3}\right)\left(\dfrac{-3}{4}\right)...................\left(\dfrac{-98}{99}\right)\left(\dfrac{-99}{100}\right)\)
\(A=\dfrac{\left(-1\right)\left(-2\right)\left(-3\right).........................\left(-98\right)\left(-99\right)}{2.3.4....................98.99.100}\)
\(A=\dfrac{-1}{100}\)
Ta có
A = \(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{99}-1\right).\left(\dfrac{1}{100}-1\right)\)(99 thừa số)
A = \(\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}....\dfrac{-98}{99}.\dfrac{-99}{100}\)
A = \(\dfrac{\left(-1\right).\left(-2\right).\left(-3\right)....\left(-98\right).\left(-99\right).\left(-100\right)}{2.3.4....98.99.100}\)
A = \(\dfrac{\left(-1\right).\left(-1\right).\left(-1\right)....\left(-1\right)}{1.1.1...1.1.1}\) (100 số -1, 99 số 1)
A = \(\dfrac{-1}{1.1.1.1...1.1.1}\)
A = \(\dfrac{-1}{1}\)
A = -1
Vậy A = -1
A = 1 -2 + 22 - 23 + 24 - 25 + ... + 22008
2A = 2 .(1 -2 + 22 -23 +24 -25 +...+ 22008)
2A = 2 - 22 + 23 - 2 4+ 25 - 26 + ... + 22009
2A-A= ( 2 -22+23-24+25-26+...+22009) - (1-2+22-23+24-25+...+22008)
A = (2-2) + (-22+22) + ..... + ( 22008 - 22008) + ( 22009 - 1)
A = 0 + 0 + ... + 0 + 22009 -1
A = 22009 - 1