CMR:
1/11+1/12+1/13+...+1/69+1/70>1+5/28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1+5/28=33/28
Đặt A=1/11+1/12+1/13+...+1/69+1/70
A=(1/11+1/12++1/13+...+1/20)+(1/21+1/22+1/23+...+1/30)+(1/31+1/32+1/33+...1/60)+...+1/70
Ta thấy :
1/11+1/12+1/13+...+1/20>1/20+1/20+1/20+...+1/20(có 10 số hạng 1/20)=1/20*10=1/2
1/21+1/22+1/23+...+1/30>1/30+1/30+1/30+...+1/30(10 số hạng 1/30)=1/30*10=1/3
1/30+1/31+1/32+...+1/60>1/60+1/60+...+1/60(30 số hạng 1/60)=1/60*30=1/2
1/61+1/62+1/63+...+1/70>1/70+1/70+1/70+...+1/70(10 số hạng 1/70)=1/70*10=1/7
=>1/11+1/12+1/13+...+1/69+1/70>1/2+1/3+1/2+1/7
=>A>31/21
Mà 31/21>33/28
=>A>33/28
=>A>1+5/28(DPCM)
Vậy A>1+5/28
Gọi \(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{69}+\dfrac{1}{70}\) là \(S\)
Ta nhận thấy:
\(\dfrac{1}{11},\dfrac{1}{12},\dfrac{1}{13},...,\dfrac{1}{19}\)đều lớn hơn \(\dfrac{1}{20}\)
\(\dfrac{1}{21},\dfrac{1}{22},\dfrac{1}{23},...,\dfrac{1}{29}\)đều lớn hơn \(\dfrac{1}{30}\) \(\dfrac{1}{31},\dfrac{1}{32},\dfrac{1}{33},...,\dfrac{1}{39}\)đều lớn hơn \(\dfrac{1}{40}\) \(\dfrac{1}{41},\dfrac{1}{42},\dfrac{1}{43},...,\dfrac{1}{49}\)đều lớn hơn \(\dfrac{1}{50}\) \(\dfrac{1}{51},\dfrac{1}{52},\dfrac{1}{53},...,\dfrac{1}{59}\)đều lớn hơn \(\dfrac{1}{60}\)\(\dfrac{1}{61},\dfrac{1}{62},\dfrac{1}{63},...,\dfrac{1}{69}\)đều lớn hơn \(\dfrac{1}{70}\)
\(\Rightarrow S< \dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{30}+...+\dfrac{1}{30}+\dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}+\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}+\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}+\dfrac{1}{70}+\dfrac{1}{70}+...+\dfrac{1}{70}\\ \Leftrightarrow S< \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}\\ =\dfrac{223}{140}\) \(1\dfrac{5}{29}=\dfrac{34}{29}\) \(\dfrac{223}{140}>\dfrac{210}{140}=\dfrac{3}{2}=\dfrac{87}{58}>\dfrac{34}{29}\) Vậy \(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{69}+\dfrac{1}{70}>1+\dfrac{5}{29}\left(đpcm\right)\)a)
\(\left(-11\right).\left(-28\right)+\left(-9\right).13\)
\(=308+\left(-9\right).13\)
\(=308+\left(-117\right)\)
\(=191\)
b)
\(\left(-69\right).\left(-31\right)-\left(-15\right).12\)
\(=\left(-69\right).\left(-31\right)+15.12\)
\(=2139+15.12\)
\(=2139+180\)
\(=2319\)
c)
\(\left[16-\left(-5\right)\right].\left(-7\right)\)
\(=\left[16+5\right].\left(-7\right)\)
\(=21.\left(-7\right)\)
\(=-147\)
d)
\(\left[\left(-4\right).\left(-9\right)-6\right].\left[\left(-12\right)-\left(-7\right)\right]\)
\(=\left[\left(-4\right).\left(-9\right)-6\right].\left[\left(-12\right)+7\right]\)
\(=\left[36-6\right].\left[\left(-12\right)+7\right]\)
\(=30.\left[\left(-12\right)+7\right]\)
\(=30.\left(-5\right)\)
\(=-150\)
\(A = (\frac{1}{10} + ...+ \frac{1}{19} ) + (\frac{1}{20} + ...+ \frac{1}{29}) + (\frac{1}{30} +...+ \frac{1}{39} ) + (\frac{1}{40} + ...+\frac{1}{49} ) + (\frac{1}{50} +....+ \frac{1}{59}) + (\frac{1}{60} + ....+\frac{1}{69}) + \frac{1}{70}\)
Ta có : mỗi bên có 10 số hạng
\( (\frac{1}{10} + ..+ \frac{1}{19}) < (\frac{1}{10} + ...+ \frac{1}{10}) = \frac{1}{1}\)
\(\frac{1}{20}+..+ \frac{1}{29} < (\frac{1}{20}+..+\frac{1}{20}) = \frac{1}{2}\)
\((\frac{1}{30} +...+ \frac{1}{39} )< (\frac{1}{30} +...+ \frac{1}{30}) = \frac{1}{3}\)
\((\frac{1}{40} + ...+\frac{1}{49} )< (\frac{1}{40} + ...+\frac{1}{40}) = \frac{1}{4}\)
\((\frac{1}{50} +....+ \frac{1}{59})< (\frac{1}{50} +....+ \frac{1}{50}) = \frac{1}{5}\)
\((\frac{1}{60} + ....+\frac{1}{69}) + \frac{1}{70}< (\frac{1}{60} + ....+\frac{1}{60})+ \frac{1}{70} = \frac{1}{6} +\frac{1}{70}\)
\(\implies A < 1+\frac{1}{2} + ...+ \frac{1}{6} + \frac{1}{70}= \frac{13}{15} + \frac{1}{70} <1<\frac {51}{20} \)
\(\implies A<\frac{51}{20}\) \((đpcm)\)
a. -37 + 54 + -70+ -163 + 246
= ( 54 + 246) + (-37 - 163 ) - 70
= 300 -200 - 70 = 30
b. -359+ 181+ -123+ 350+ -172
=(-178)+227+(-172)
=49+(-172)
=-123
c.-69+ 53+ 46+ -94+-14+ 78
=(-16)+(-48)+64
=-64+64
=0
d. 13- 12+ 11+10- 9+ 8- 7- 6+ 5- 4+ 3+2- 1
= 13 - (13 - 1) + (13 - 2) + (13 - 3) - (13 - 4) + (13 - 5) - (13 - 6) - (13 - 7) + (13 - 8) - (13 - 9) + (13 - 10) + (13 - 11) - (13 - 12)
= 13 - 13 + 1 + 13 - 2 + 13 - 3 - 13 + 4 + 13 - 5 - 13 + 6 - 13 + 7 + 13 - 8 - 13 + 9 + 13 - 10 + 13 - 11 - 13 + 12
= (13 - 13 + 13 + 13 - 13 + 13 - 13 - 13 + 13 - 13 + 13 + 13 - 13) + (1 - 2 - 3 + 4 - 5 + 6 + 7 - 8 + 9 - 10 - 11 = 12)
= 13 + 0
= 13
a) \(-37+54+\left(-70\right)+\left(-163\right)+246\)
\(=\left(246+54\right)-\left(37+163\right)-70\)
\(=300-200-70\)
\(=100-70=30\)
b) \(-359+181+\left(-123\right)+350+\left(-172\right)\)
\(=-359+181-123+350-172\)
\(=\left(-359+350\right)+\left(181-172\right)-123\)
\(=-9+9-123\)
\(=-123\)
c) \(-69+53+46+\left(-94\right)+\left(-14\right)+78\)
\(=-69+53+46-94-14+78\)
\(=\left(-69+78\right)+\left(53-14\right)+\left(46-94\right)\)
\(=9+39-48\)
\(=48-48=0\)
d) \(13-12+11+10-9+8-7-6+5-4+3+2-1\)
\(=\left(13-12\right)+\left(11+10\right)-\left(9-8\right)-\left(7+6\right)+\left(5-4\right)+\left(3+2-1\right)\)
\(=1+21-1-13+1+5\)
\(=21-13+1+5\)
\(=8+1+5=9+5=14\)