cho hình thoi ABCD có cạnh bằng đường chéo AC trên tia đối của AD lấy điểm E, đường thẳng EB cắt đường thẳng DC tại F, CE cắt AF tại O. Chứng minh \(\Delta\)AEC đồng dạng \(\Delta\)CAF, tính góc EOF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có hình thoi ABCD (gt) => AB = BC (Đn)
có : AB = AC (gt)
=> AB = BC = AC
=> tam giác ABC đều (đn)
=> ^ABC = 60 (tc)
có : BC // AD do ABCD là hình thoi (gt) ; ^ABC slt ^EAB
=> ^EAB = 60 (tc)
tương tự => ^EAB = ^BCF = 60
có : AD // BC (cmt) => ^AEB = ^CBF (đv)
xét tam giác AEB và tam giác CBF
=> tam giác AEB đồng dạng với tg CBF (g-g)
=> AE/AB = BC/CF (đn)
có : AB = BC = AC (cmt)
=> AE/AC = AC/CF
có : ^EAC = ^ACF = 120 (tự cm)
xét tam giác EAC và tam giác ACF
=> tam giác EAC đồng dạng với tg ACF (c-g-c)
=> ^AEC = ^OAC (Đn)
xét tam giác EAC và tg AOC có : ^ACO chung
=> tg EAC đồng dạng với tg AOC (g-g)
=> ^AOC = ^EAC (đn) mà ^EAC = 120
=> ^AOC = 120 có : ^AOC = ^EOF (đối đỉnh)
=> ^EOF = 120
Xét ΔAEB và ΔCBF có:
∡AEB=∡CBF (đồng vị)
∡EBA=∡BFC (đồng vị)
⟹ΔAEB∼ΔCBF (g.g)
⟹AECB=ABCF
Mà CB=AB=AC (gt) ⟹AEAC=ACCF
Mặt khác ∡EAC=∡ACF(=120o)⟹ΔAEC∼ΔCAF
Theo giả thiết thì AB = BC = CD = AD = AC
\(\Rightarrow\Delta ABC\)và \(\Delta ACD\)đều
vì BC // ED \(\Rightarrow\widehat{BCF}=\widehat{ADC}=60^o\)
AB // DF \(\Rightarrow\widehat{EAB}=\widehat{ADC}=60^o\)
\(\Rightarrow\widehat{EAC}=\widehat{ACF}=120^o\)
\(\Delta ABE~\Delta DFE\); \(\Delta CFB~\Delta DFE\)
\(\Rightarrow\Delta ABE~\Delta CFB\Rightarrow\frac{AB}{AE}=\frac{CF}{BC}\Rightarrow CF.AE=AB.BC=AC^2\)
\(\Rightarrow\frac{AC}{CF}=\frac{AE}{AC}\)
\(\Rightarrow\Delta ACE~\Delta CFA\left(c.g.c\right)\Rightarrow\widehat{CFA}=\widehat{ACE}\)
Ta có : \(\widehat{OAC}+\widehat{OCA}=\widehat{OAC}+\widehat{CFA}=60^o\)
\(\Rightarrow\widehat{AOC}=\widehat{ÈOF}=120^o\)