cho đường tròn tâm I nội tiếp tam giác ABC, tiếp xúc với các cạnh AB,AC,BC lần lượt tại H,Q,K. Từ H vẽ đường thẳng song song với cạnh BC cắt AK tại M. Trên tia đối của tia MH lấy điểm F sao cho M là trung điểm của HF. Chứng minh K,F,Q thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm
a, Xét tam giác ABC vuông tại A và HA = HD
- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC
- Mà BC là đường kính O
=> \(\widehat{BAC}=90^o\)
=> \(\Delta ABC\perp A\)
Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )
- Có AH là đường cao
=> OH là đường trung tuyến \(\Delta OAD\)
=> H là trug điểm AD
=> HA = HD
b, MN // SC , SC tiếp tuyến của (O)
Xét tam giác OSC có : M là trung điểm của OC
N là trung điểm của OS
=> MN là đường TB của \(\Delta OSC\)
=> MN // SC
Mà \(MN\perp OC\left(gt\right)\)
\(\Rightarrow OC\perp SC\)tại S
- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)
\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)
c, BH . HC = AF . AK
Xét \(\Delta ABC\perp A\)có :
AH là đường cao
=> AH2 = BH . HC
Xét đường tròn đường kính AH có F thuộc đường tròn
\(\Rightarrow\widehat{AFH}=90^o\)
\(\Rightarrow HF\perp AK\)tại F
Xét tam giác AHK vuông tại H , ta có :
HF là đường cao
=> AH2 = AF . AK
=> BH . HC = AF . AK ( = AH2 )
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
a) Xét tứ giác BFEC: ^BFC=^BEC=900 => Tứ giác BFEC là tứ giác nội tiếp đường tròn (đpcm).
b) Dễ thấy tứ giác ABKC nội tiếp đường tròn (O) => ^CAK=^CBK hay ^CAN=^CBK (1)
AK là đường kính của (O); B nằm trên (O) => AB\(\perp\)BK
Mà CF\(\perp\)AB => BK//CF => ^CBK=^BCF (2)
(1); (2) => ^CAN=^BCF. Mà ^BCF=^CAH (Cùng phụ ^ABC) => ^CAN=^BAH hay ^CAN=^FAM
Lại có: ^ACN=^AHE (Cùng phụ ^HAC)
Dễ chứng minh tứ giác AFHE nội tiếp đường tròn => ^AHE=^AFE
=> ^ACN=^AFE. Hay ^ACN=^AFM
Xét \(\Delta\)AMF và \(\Delta\)ANC: ^ACN=^AFM; ^CAN=^FAM => \(\Delta\)AMF ~ \(\Delta\)ANC (g.g)
=> \(\frac{AM}{AN}=\frac{MF}{NC}\)(*)
=> ^AMF=^ANC => 1800 - ^AMF=1800 - ^ANC => ^FMH=^CNK
Tứ giác ABKC nội tiếp (O) => ^ABC=^AKC. Mà ^ABC=^AHF (Cùng phụ ^BAH)
=> ^AKC=^AHF hay ^NKC=^MHF.
Xét \(\Delta\)NCK và \(\Delta\)MFH: ^NKC=^MHF; ^CNK=^FMH => \(\Delta\)NKC ~ \(\Delta\)MFH (g.g)
=> \(\frac{HM}{NK}=\frac{FM}{NC}\)(**)
Từ (*) và (**) => \(\frac{AM}{AN}=\frac{HM}{NK}\Rightarrow\frac{AM}{HM}=\frac{AN}{NK}\)=> MN//HK (Định lí Thales đảo) (đpcm).
Cho mình hỏi bài này đã được giải chưa vậy? Mình hiện đang giải bài này nhưng mình vẫn chưa thể giải được.