K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2021

1, rise => raise

2, diligent=? diligently

3,less -> fewer

4, maintain -> maintaining

5, not rarely => bỏ not

28 tháng 9 2023

1.c

2.a

3.a

4.b

5.b

6.d

7.c

28 tháng 9 2023

C - A - A - B - B - D - C

29 tháng 3 2021

IV

1 moon

2 when

3 for

4 from

5 living

6 understands

7 hungry

8 developes

VI

1 is written

2 is folded

3 is put

4 is sent

5 is collected

6 is sorted 

7 is taken

8 is delivered

31 tháng 3 2021

Em cảm ơn ạ

17 tháng 4 2021

1 about - in

2 In - to

3 from - of - in

4 in - at - during

5 in - on

6 about

7 from

8 as

9 by - in - in

10 to - in

6 tháng 4 2023

Bài III.2b.

Phương trình hoành độ giao điểm của \(\left(P\right)\) và \(\left(d\right)\) : \(x^2=\left(m+1\right)x-m-4\)

hay : \(x^2-\left(m+1\right)x+m+4=0\left(I\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm nên phương trình \(\left(I\right)\) sẽ có hai nghiệm phân biệt. Do đó, phương trình \(\left(I\right)\) phải có : 

\(\Delta=b^2-4ac=\left[-\left(m+1\right)\right]^2-4.1.\left(m+4\right)\)

\(=m^2+2m+1-4m-16\)

\(=m^2-2m-15>0\).

\(\Rightarrow m< -3\) hoặc \(m>5\).

Theo đề bài : \(\sqrt{x_1}+\sqrt{x_2}=2\sqrt{3}\)

\(\Rightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=\left(2\sqrt{3}\right)^2=12\)

\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=12\left(II\right)\)

Do phương trình \(\left(I\right)\) có hai nghiệm khi \(m< -3\) hoặc \(m>5\) nên theo định lí Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m+1\right)}{1}=m+1\\x_1x_2=\dfrac{c}{a}=\dfrac{m+4}{1}=m+4\end{matrix}\right.\).

Thay vào \(\left(II\right)\) ta được : \(m+1+2\sqrt{m+4}=12\)

Đặt \(t=\sqrt{m+4}\left(t\ge0\right)\), viết lại phương trình trên thành : \(t^2-3+2t=12\)

\(\Leftrightarrow t^2+2t-15=0\left(III\right)\).

Phương trình \(\left(III\right)\) có : \(\Delta'=b'^2-ac=1^2-1.\left(-15\right)=16>0\).

Suy ra, \(\left(III\right)\) có hai nghiệm phân biệt : 

\(\left\{{}\begin{matrix}t_1=\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{-1+\sqrt{16}}{1}=3\left(t/m\right)\\t_2=\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{-1-\sqrt{16}}{1}=-5\left(ktm\right)\end{matrix}\right.\)

Suy ra được : \(\sqrt{m+4}=3\Rightarrow m=5\left(ktm\right)\).

Vậy : Không có giá trị m thỏa mãn đề bài.

6 tháng 4 2023

Bài IV.b.

Chứng minh : Ta có : \(OB=OC=R\) nên \(O\) nằm trên đường trung trực \(d\) của \(BC\).

Theo tính chất hai tiếp tuyến cắt nhau thì \(IB=IC\), suy ra \(I\in d\).

Suy ra được \(OI\) là một phần của đường trung trực \(d\) của \(BC\) \(\Rightarrow OI\perp BC\) tại \(M\) và \(MB=MC\).

Xét \(\Delta OBI\) vuông tại \(B\) có : \(MB^2=OM.OI\).

Lại có : \(BC=MB+MC=2MB\)

\(\Rightarrow BC^2=4MB^2=4OM.OI\left(đpcm\right).\)

Tính diện tích hình quạt tròn

Ta có : \(\hat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\Rightarrow sđ\stackrel\frown{BC}=2.\hat{BAC}=2.70^o=140^o\) (góc nội tiếp).

\(\Rightarrow S=\dfrac{\pi R^2n}{360}=\dfrac{\pi R^2.140^o}{360}=\dfrac{7}{18}\pi R^2\left(đvdt\right)\)

 

Câu 3: 

a: \(BD=\sqrt{BC^2-DC^2}=4\left(cm\right)\)

b: \(\widehat{A}=180^0-2\cdot70^0=40^0< \widehat{B}\)

nên BC<AC=AB

c: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó:ΔEBC=ΔDCB

d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)

nên ΔOBC cân tại O

31 tháng 10 2023

Câu 2

a) Thay y = -2 vào biểu thức đã cho ta được:

2.(-2) + 3 = -1

Vậy giá trị của biểu thức đã cho tại y = -2 là -1

b) Thay x = -5 vào biểu thức đã cho ta được:

2.[(-5)² - 5] = 2.(25 - 5) = 2.20 = 40

Vậy giá trị của biểu thức đã cho tại x = -5 là 40

4.2:

a: x^2-x+1=x^2-x+1/4+3/4

=(x-1/2)^2+3/4>=3/4>0 với mọi x

=>x^2-x+1 ko có nghiệm

b: 3x-x^2-4

=-(x^2-3x+4)

=-(x^2-3x+9/4+7/4)

=-(x-3/2)^2-7/4<=-7/4<0 với mọi x

=>3x-x^2-4 ko có nghiệm

5:

a: x^2+y^2=25

x^2-y^2=7

=>x^2=(25+7)/2=16 và y^2=16-7=9

x^4+y^4=(x^2)^2+(y^2)^2

=16^2+9^2

=256+81

=337

b: x^2+y^2=(x+y)^2-2xy

=1^2-2*(-6)

=1+12=13

x^3+y^3=(x+y)^3-3xy(x+y)

=1^3-3*1*(-6)

=1+18=19

 

8 tháng 8 2023

mik cảm ơn bạn nhiều vì đã giúp mik