Bài 3. Cho n là số nguyên. Chứng minh rằng:
a, \(\left(n^3-n\right)⋮3\)
b, \(\left(n^5-n\right)⋮30\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
Ta có: \(n^5-5n^3+4n^2\)
\(=n^2\left(n^3-5n+4\right)\)
\(=n^2\left(n^3-n-4n+4\right)\)
\(=n^2\cdot\left[n\left(n-1\right)\left(n+1\right)-4\left(n-1\right)\right]\)
\(=n^2\left(n-1\right)\left(n^2+n-4\right)⋮120\)
Bạn tham khảo tại đây
https://olm.vn/hoi-dap/detail/56101917412.html
Không chắc lắm đâu nhé !
Câu hỏi của Quỳnh Hương - Toán lớp 9 - Học toán với OnlineMath
Đặt \(U_n=\left(3+\sqrt{5}\right)^n+\left(3-\sqrt{5}\right)^n\) , \(a=\left(3+\sqrt{5}\right)^n\) , \(b=\left(3-\sqrt{5}\right)^n\)
Ta có : \(U_n=a+b\); \(U_{n+1}=\left(3+\sqrt{5}\right)a+\left(3-\sqrt{5}\right)b\);
\(U_{n+2}=\left(3+\sqrt{5}\right)^2a+\left(3-\sqrt{5}\right)^2b=\left(14+6\sqrt{5}\right)a+\left(14-6\sqrt{5}\right)b\)
\(=6\left(3+\sqrt{5}\right)a+6\left(3-\sqrt{5}\right)b-4a-4b\)
\(=6\left[\left(3+\sqrt{5}\right)a+\left(3-\sqrt{5}\right)b\right]-4\left(a+b\right)\)
\(=6U_{n+1}-4U_n\)
Vậy ..............................................
Bài toán chia kẹo kinh điển đây mà.
Trước hết chúng ta đếm 1 chút theo kiểu lớp 1 lớp 2 gì đó: có 1 đoạn thẳng, cần chia đoạn thẳng ấy làm 3 phần, vậy cần chấm lên đoạn thẳng ấy mấy điểm? Câu trả lời rõ ràng là 2 điểm. Cần chia 1 con cá thành 3 khúc, ta cần 2 nhát cắt; cần ngăn 4 con cọp xếp hàng ngang để chúng đỡ cắn nhau, ta cần 3 vách ngăn. Hay để chia 1 đối tượng làm n phần, ta cần dùng n-1 vách ngăn để chia nó ra, Như thế này:
Bây giờ có số tự nhiên n, ta phân tích nó như sau:
\(n=1+1+1+...+1+1+1\)
Giả sử ta "vách ngăn" vào một vài vị trí giữa các số 1, kiểu thế này:
\(1+1+\left|1+1+1\right|+1+|1+1+...+1\)
Rõ ràng với 3 vách ngăn trên, ta chia n thành 3+1=4 phần, mỗi phần đều có giá trị nguyên dương, lần lượt là 2,3,1,n-6.
Bây giờ cần chia dãy \(1+1+...+1\) trên thành m phần, vậy cần đặt bao nhiêu vách ngăn? Cũng như ban đầu đã phân tích, ta cần đặt \(m-1\) tấm vách ngăn.
Ta có bao nhiêu vị trí để đặt \(m-1\) vách ngăn nói trên? Có n số 1, ta sẽ có \(n-1\) vị trí đặt vách ngăn, sao cho giữa 2 vách ngăn có ít nhất một số 1 (hay giữa 2 vách ngăn luôn là 1 giá trị nguyên dương).
Tóm lại, để chia dãy tổng \(1+1+...+1\) (n số hạng) thành m phần, sao cho mỗi phần chứa ít nhất một số 1, ta cần đặt \(m-1\) tấm vách ngăn vào \(n-1\) vị trí khả dĩ. Như vậy, ta có \(C_{n-1}^{m-1}\) cách.
Hiển nhiên, giá trị của mỗi phần (tức là tổng các số 1 trong phần đó) chính là giá trị nghiệm \(x_i\) của pt \(\sum\limits^m_{i=1}x_i=n\). Vậy pt có \(C_{n-1}^{m-1}\) nghiệm nguyên dương.
//Bay giờ tới nghiệm tự nhiên thì đơn giản, số tự nhiên khác số nguyên dương đúng 1 số 0, bây giờ ta "loại" nó đi là ra bài toán bên trên. Bằng cách đặt \(y_1=x_1+1;y_2=x_2+1...;y_m=x_m+1\), ta đảm bảo \(y_i\) luôn nguyên dương khi \(x_i\) tự nhiên.
Khi đó:
\(y_1+y_2+...+y_m=\left(x_1+1\right)+\left(x_2+1\right)+...+\left(x_m+1\right)\)
\(=\left(x_1+x_2+...+x_m\right)+m=n+m\)
Quay về bài trên, ta có pt \(y_1+y_2+...+y_m=n+m\) có \(C_{n+m-1}^{m-1}\) nghiệm.
Ứng với mỗi \(y_i\) cho đúng 1 giá trị \(x_i=y_i-1\) tương ứng, do đó pt:
\(\sum\limits^m_{i=1}x_i=n\) có \(C_{n+m-1}^{m-1}\) nghiệm tự nhiên
Công thức đầu của em có vẻ bị sai :D
Wow, big brain, cảm ơn thầy nhiều ;) (mà hình như 2 công thức đó bằng nhau vì \(C^k_n=C^{n-k}_n\) ấy thầy).
a/ \(n^3-n=\left(n-1\right)n\left(n+1\right)\)
Ta có : \(n\in Z\Leftrightarrow n-1;n;n+1\in Z\) và là 3 số nguyên liên tiếp
\(\Leftrightarrow n^3-n⋮6\left(đpcm\right)\)
b/ \(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\)
Ta có : \(n\left(n-1\right)\left(n+1\right)⋮6\)
+) Nếu \(n=5k\Leftrightarrow n\left(n-1\right)\left(n+1\right)⋮5\Leftrightarrow A⋮30\)
+) Nếu \(n=5k+1\Leftrightarrow n\left(n-1\right)\left(n+1\right)⋮5\Leftrightarrow A⋮30\)
+) Nếu \(n=5k+2\Leftrightarrow n\left(n-1\right)\left(n+1\right)⋮5\Leftrightarrow A⋮30\)
+) Nếu \(n=5k+3\Leftrightarrow n\left(n-1\right)\left(n+1\right)⋮5\Leftrightarrow A⋮30\)
+) Nếu \(n=5k+4\Leftrightarrow n\left(n-1\right)\left(n+1\right)⋮30\Leftrightarrow A⋮30\)
Vậy...
a: \(n^3-n\)
\(=n\left(n^2-1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\)
Vì n-1, n và n+1 là ba số tự nhiên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)
b: Ta có: \(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮30\)