a) Xem hình 32, Giải thích tại sao AD<BC
b) Một miếng ván gỗ có dạng hình hộp chữ nhật (h.33). Một người thợ muốn cắt miếng ván đó bằng cưa. Hỏi người thợ đó phải dùng cưa cắt ntn để có được đường cắt ngắn nhất?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo hình vẽ ta có: a ⊥ MN, b ⊥ MN ⇒ a // b (quan hệ từ vuông góc đến song song)
\(a,\dfrac{a}{b}=\dfrac{ad}{bd}\) và \(\dfrac{c}{d}=\dfrac{bc}{bd}\). Do \(\dfrac{a}{b}< \dfrac{c}{d}\) nên \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\).
Suy ra \(ad< bc\)
\(b,\dfrac{a}{b}< \dfrac{c}{d}\) suy ra \(ad< bc\). Do đó \(ab+ad< ab+bc\) nên \(a\left(b+d\right)< b\left(a+c\right)\)
Vậy \(\dfrac{a}{b}< \dfrac{a+c}{b+d}.\) Từ \(ad< bc\) ta cũng có \(ad+cd< bc+cd\) nên \(\left(a+c\right)d< \left(b+d\right)c\)
\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\)
a) Xét \(\Delta ABC\) và \(\Delta CDA\) ta có:
\(AB = CD\) (gt)
\(AD = BC\) (gt)
\(AC\) chung
Suy ra: \(\Delta ABC = \Delta CDA\) (c-c-c)
\( \Rightarrow \widehat {BAC} = \widehat {ACD}\) (hai góc tương ứng)
Mà hai góc ở vị trí so le trong
Suy ra \(AB\) // \(CD\)
Chứng minh tương tự \(\Delta ADB = \Delta CBD\) (c-c-c)
\( \Rightarrow \widehat {ABD} = \widehat {CDB}\) (hai góc tương ứng)
Mà hai góc ở vị trí so le trong
\( \Rightarrow AD\;{\rm{//}}\;BC\)
b) Xét \(\Delta ABC\) và \(\Delta CDA\) ta có:
\(AB = CD\) (gt)
\(\widehat {{\rm{BAC}}} = \widehat {{\rm{ACD}}}\) (do \(AB\) // \(CD\))
\(AC\) chung
Suy ra: \(\Delta ABC = \Delta CDA\) (c-g-c)
\( \Rightarrow \widehat {BCA} = \widehat {CAD}\) (hai góc tương ứng)
Mà hai góc ở vị trí so le trong
Suy ra \(AD\;{\rm{//}}\;BC\)
c) Xét \(\Delta ABC\) và \(\Delta CDA\) ta có:
\(BC = AD\) (gt)
\(\widehat {{\rm{BCA}}} = \widehat {{\rm{CDA}}}\) (do \(AD\) // \(BC\))
\(AC\) chung
Suy ra \(\Delta ABC = \Delta CDA\) (c-g-c)
Suy ra \(\widehat {{\rm{BAC}}} = \widehat {{\rm{ACD}}}\) (hai góc tương ứng)
Mà hai góc ở vị trí so le trong
Suy ra: \(AB\) // \(CD\)
d) Xét tứ giác \(ABCD\) ta có:
\(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \)
Mà \(\widehat A = \widehat C\); \(\widehat B = \widehat D\) (gt)
Suy ra \(\widehat A + \widehat D = 180^\circ ;\;\widehat A + \widehat B = 180^\circ \)
Mà hai góc ở vị trí trong cùng phía
Suy ra \(AB\;{\rm{//}}\;CD;\;AD\;{\rm{//}}\;BC\)
e) Xét \(\Delta APB\) và \(\Delta CPD\) ta có:
\(PA = PC\) (gt)
\(\widehat {{\rm{APB}}} = \widehat {{\rm{CPD}}}\) (đối đỉnh)
\(PB = PD\) (gt)
Suy ra: \(\Delta APB = \Delta CPD\) (c-g-c)
Suy ra: \(\widehat {BAP} = \widehat {PCD}\) (hai góc tương ứng)
Mà hai góc ở vị trí so le trong
Suy ra \(AB\;{\rm{//}}\;CD\)
Chứng minh tương tự: \(\Delta APD = \Delta CPB\) (c-g-c)
Suy ra \(\widehat {{\rm{DAP}}} = \widehat {{\rm{BCP}}}\) (hai góc tương ứng)
Mà hai góc ở vị trí so le trong
Suy ra \(AD\) // \(BC\)
a: Ta có: \(\widehat{IAD}=\dfrac{\widehat{DAB}}{2}\)
\(\widehat{BCK}=\dfrac{\widehat{BCD}}{2}\)
mà \(\widehat{DAB}=\widehat{BCD}\)
nên \(\widehat{IAD}=\widehat{BCK}\)
mà \(\widehat{BCK}=\widehat{DKC}\)
nên \(\widehat{IAD}=\widehat{CKD}\)
b: Ta có: \(\widehat{IAD}=\widehat{CKD}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên AI//KC
Xét tứ giác AICK có
AI//KC
AK//IC
Do đó: AICK là hình bình hành
a: Ta có: \(\widehat{IAD}=\dfrac{\widehat{DAB}}{2}\)
\(\widehat{BCK}=\dfrac{\widehat{BCD}}{2}\)
mà \(\widehat{DAB}=\widehat{BCD}\)
nên \(\widehat{IAD}=\widehat{BCK}\)
mà \(\widehat{BCK}=\widehat{CKD}\)
nên \(\widehat{IAD}=\widehat{CKD}\)
b: Ta có: \(\widehat{IAD}=\widehat{CKD}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên AI//KC
Xét tứ giác AICK có
AK//CI
AI//KC
Do đó: AICK là hình bình hành
Xét ΔMBD và ΔMAB có
góc MBD=góc MAB
góc M chung
=>ΔMBD đồng dạng với ΔMAB
=>MB/MA=MD/MB
=>MB^2=MA*MD
Theo mk làm như vậy!