K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Ta có: = (1; 7); = (1; 7)

= => ABCD là hình bình hành (1)

ta lại có : AB2 = 50 => AB = 5 √2

AD2 = 50 => AD = 5 √2

AB = AD, kết hợp với (1) => ABCD là hình thoi (2)

Mặt khác = (1; 7); = (-7; 1)

1.7 + (-7).1 = 0 => (3)


Kết hợp (2) và (3) suy ra ABCD là hình vuông

(1) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(1;-4\right)\), \(\overrightarrow{b}=\left(0;2\right)\). tọa độ của vecto \(\overrightarrow{u}=2\overrightarrow{a}-\overrightarrow{b}\) là?(2) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(-7;3\right)\), \(\overrightarrow{b}=\left(4;1\right)\). tọa độ của vecto \(\overrightarrow{u}=\overrightarrow{b}-2\overrightarrow{a}\) là?(3) trong mặt phẳng tọa độ Oxy, cho hai...
Đọc tiếp

(1) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(1;-4\right)\)\(\overrightarrow{b}=\left(0;2\right)\). tọa độ của vecto \(\overrightarrow{u}=2\overrightarrow{a}-\overrightarrow{b}\) là?

(2) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(-7;3\right)\)\(\overrightarrow{b}=\left(4;1\right)\)tọa độ của vecto \(\overrightarrow{u}=\overrightarrow{b}-2\overrightarrow{a}\) là?

(3) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{u}=\left(-5;4\right)\)\(\overrightarrow{v}=-3\overrightarrow{j}\). tọa độ của vecto \(\overrightarrow{a}=2\overrightarrow{u}-5\overrightarrow{v}\) là?

(4) trong mặt phẳng tọa độ Oxy, cho hai điểm A (1;1), B (4;-7) và \(\overrightarrow{OM}=2\overrightarrow{OA}-5\overrightarrow{OB}\). tổng hoành độ và tung độ của điểm M là?

giúp mk vs ạ mk cần gấp thank

1

(1); vecto u=2*vecto a-vecto b

=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)

(2): vecto u=-2*vecto a+vecto b

=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)

(3): vecto a=2*vecto u-5*vecto v

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)

(4): vecto OM=(x;y)

2 vecto OA-5 vecto OB=(-18;37)

=>x=-18; y=37

=>x+y=19

11 tháng 2 2017

Phương trình của đường thẳng AB có dạng: y = ax + b.

Do phương trình đi qua A(4;5) và B(1; -1) nên ta có:

5 = a.4 + b (1)

-1 = a.1 + b (2)

Trừ từng vế của (1) và (2), ta có: 6 = 3a ⇒ a = 2.

Thay a = 2 và (1) để tìm b, ta có 5 = 2.4 + b ⇒ b = -3.

Vậy phương trình đường thẳng AB là: y = 2x – 3.

Làm tương tự như trên, ta có:

Phương trình đường thẳng BC là: y = -x.

Phương trình đường thẳng CD là: y = x – 8.

Phương trình đường thẳng DA là: y = -2x + 13.

7 tháng 4 2018

Hai đường chéo AC và BD vuông góc với nhau tại I.

- Đường thẳng AB có hệ số góc bằng 2, do đó ta có

tgα = 2 ⇒ α = 63 ° 26 ' (tính trên máy tính bỏ túi).

Suy ra ∠ (ABD) ≈ 63 ° 26 '

Tam giác ABD cân, nên cũng có  ∠ (ADB) ≈  63 ° 26 '

Từ đó suy ra  ∠ (BAD) =  180 °  - 2.  63 ° 26 '  ≈  53 ° 8 '

11 tháng 12 2021

\(a,\) Thay \(x=3;y=4\Rightarrow\dfrac{4}{3}\cdot3=4\) (đúng)

Vậy \(A\left(3;4\right)\in y=\dfrac{4}{3}x\)

11 tháng 12 2021

\(A\left(3;4\right)< =>4=\dfrac{4}{3}\cdot3=4\)

Vậy điểm A thuộc ĐTHS.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) 

b) Vì tọa độ vectơ \(\overrightarrow {OM} \) chính là tọa độ của điểm M (với mọi M) nên ta có:

\(\overrightarrow {OD}  = \left( { - 1;4} \right),\overrightarrow {OE}  = \left( {0; - 3} \right),\overrightarrow {OF}  = \left( {5;0} \right)\)

c) 

Từ hình vẽ ta có tọa độ của hai vectơ   và \(\overrightarrow j \)là

 và \(\overrightarrow j  = (0;1)\)

1 tháng 2 2017

Đáp án B

16 tháng 2 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ AH ⊥ Ox, AK ⊥ Oy.

Vì AH = 4 > R = 3 nên đường tròn tâm (A) và trục hoành không giao nhau.

Vì AK = 3 = R nên đường tròn (A) và trục tung tiếp xúc nhau.

12 tháng 9 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ AH ⊥ Ox, AK ⊥ Oy.

Vì AH = 4 > R = 3 nên đường tròn tâm (A) và trục hoành không giao nhau.

Vì AK = 3 = R nên đường tròn (A) và trục tung tiếp xúc nhau.