Cho tập A = {1; 2; 3; 4; 5; 6; 7; 8}. Có bao nhiêu số tự nhiên chẵn gồm 5 chữ số đôi một khác nhau lấy từ tập A và không bắt đầu bởi 123?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:{2,4};{2,3};{3,4}
2:{a,b,4},...
3:{a},....
------------------------
1 : { 2 ; 4 } ; { 2 ; 3 } ; { 3 ; 4 }
2 : { a , b , 4 } , ........
3 : { a } ,............
Từ biểu diễn của tập hợp B trên trục số, ta có điều kiện cần và đủ để A ⊂ B là
a ; a + 2 ⊂ ( − ∞ ; − 1 ) a ; a + 2 ⊂ ( 1 ; + ∞ ) ⇔ a + 2 < − 1 a > 1 ⇔ a < − 3 a > 1
Vậy tập hợp các giá trị của tham số a sao cho A ⊂ B là ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )
Đáp án A
a, Tập hợp con của A là{1} ,{2}, A,∅
b, Để M ⊂A và M⊂B
thì M={1}
c,Vì A⊂N và B⊂N
Nên N={1;2;4}
ai bao la ko dung thi tim ra cach nhanh nhat de tinh tap con di
Nguyễn Việt Lâm
Không biết đề là ba số đầu khác 123 hay số đầu tiên khác 1, 2, 3. Đây t làm theo cách hiểu thứ nhất nha.
Theo giả thiết, số cách sắp xếp 3 chữ số đầu tiên là \(A_8^3-1=335\)
Số cách sắp xếp 2 chữ số cuối là \(A_5^2=20\)
\(\Rightarrow\) Có \(335.20=6700\) cách lập số tự nhiên thỏa mãn yêu cầu bài toán.
Không biết đúng không nữa-.-