K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) Tính √25 + √9 rồi so sánh kết quả với .

Trả lời: < √25 + √9.

b) Ta có: = a + b và

= + 2√a.√b +

= a + b + 2√a.√b.

Vì a > 0, b > 0 nên √a.√b > 0.

Do đó < √a + √b


3 tháng 4 2017

a) Tính √25 + √9 rồi so sánh kết quả với .

Trả lời: < √25 + √9.

b) Ta có: = a + b và

= + 2√a.√b +

= a + b + 2√a.√b.

Vì a > 0, b > 0 nên √a.√b > 0.

Do đó < √a + √b

9 tháng 7 2021

a)\(\sqrt{25}+\sqrt{9}=5+3=8\)

\(\sqrt{25+9}=\sqrt{36}=6\)

Do \( 8>6\)

\(\Rightarrow\)\(\sqrt{25}+\sqrt{9}>\sqrt{25+9}\)

9 tháng 7 2021

undefined

10 tháng 8 2018

So sánh:

\(a,\sqrt{25+9}\)và \(\sqrt{25}+\sqrt{9}\)

Ta có:

\(\sqrt{25+9}=\sqrt{34}< \sqrt{36}=6\) \(\left(1\right)\)

\(\sqrt{25}+\sqrt{9}=\sqrt{5^2}+\sqrt{3^2}=5+3=8\) \(\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)

\(b,\sqrt{25-16}\) và \(\sqrt{25}-\sqrt{16}\)

Tương tự:)

5 tháng 7 2018

\(\sqrt{25+9}=\sqrt{34}< \sqrt{36}=6\)

\(\sqrt{25}+\sqrt{9}=5+3=8\)

Vì \(6< 8\Rightarrow\sqrt{36}< \sqrt{25}+\sqrt{9}\Rightarrow\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)

16 tháng 4 2021

a) Ta có: 

+)√25+9=√34+)25+9=34.

+)√25+√9=√52+√32=5+3+)25+9=52+32=5+3

=8=√82=√64=8=82=64.

Vì 34<6434<64 nên √34<√6434<64

Vậy √25+9<√25+√925+9<25+9

b) Với a>0,b>0a>0,b>0, ta có

+)(√a+b)2=a+b+)(a+b)2=a+b.

+)(√a+√b)2=(√a)2+2√a.√b+(√b)2+)(a+b)2=(a)2+2a.b+(b)2

 =a+2√ab+b=a+2ab+b

 =(a+b)+2√ab=(a+b)+2ab. 

Vì a>0, b>0a>0, b>0 nên √ab>0⇔2√ab>0ab>0⇔2ab>0

⇔(a+b)+2√ab>a+b⇔(a+b)+2ab>a+b

⇔(√a+√b)2>(√a+b)2⇔(a+b)2>(a+b)2

⇔√a+√b>√a+b⇔a+b>a+b (đpcm)

17 tháng 4 2021

a, Ta có : \(\sqrt{25+9}=\sqrt{34}\)

\(\sqrt{25}+\sqrt{9}=5+3=8=\sqrt{64}\)

mà 34 < 64 hay \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)

b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)

bình phương 2 vế ta được : \(a+b< a+2\sqrt{ab}+b\)

\(\Leftrightarrow2\sqrt{ab}>0\)vì \(a;b>0\)nên đẳng thức này luôn đúng )

Vậy ta có đpcm 

24 tháng 5 2016

\(0,5\sqrt{100}-\sqrt{\frac{4}{25}}=0,5.10-\frac{\sqrt{4}}{\sqrt{25}}=5-\frac{2}{5}=\frac{23}{5}=\frac{138}{30}\)

\(\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5=\left(\sqrt{\frac{10}{9}-\frac{3}{4}}\right):5=\sqrt{\frac{13}{36}}:5=\frac{\sqrt{13}}{6}:5=\frac{\sqrt{13}}{30}\)

Vì 13 < 138 nên \(\sqrt{13}< 138\Rightarrow\frac{\sqrt{13}}{30}< \frac{138}{30}\)

Vậy \(0,5\sqrt{100}-\sqrt{\frac{4}{25}}>\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5\).

25 tháng 10 2023

Jdkdk

Jidkri

19 tháng 4 2021

a, Ta có  \(\sqrt{25-16}=\sqrt{9}=3\)

\(\sqrt{25}-\sqrt{16}=5-4=1\)

Do 3 > 1 nên \(\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)

13 tháng 5 2021

a) căn 25 - 16  > căn 25 - căn 16

 

b)Với a>b>0 nên  \sqrt{a},\sqrt{b},\sqrt{a-b} đều xác định

 

Để so sánh \sqrt{a}-\sqrt{b} và \sqrt{a-b} ta quy về so sánh \sqrt{a} và \sqrt{a-b}+\sqrt{b}.

 

+) (\sqrt{a})^2=a.

                                       

+) (\sqrt{a-b}+\sqrt{b})^2=(\sqrt{a-b})^2+2\sqrt{a-b}.\sqrt{b}+(\sqrt{b})^2=a-b+b+2\sqrt{a-b}.\sqrt{b}=a+2\sqrt{a-b}.\sqrt{b}

.

Do a>b>0 nên 2\sqrt{a-b}.\sqrt{b}>0

 

 

\Rightarrow a+2\sqrt{a-b}.\sqrt{b}>a

 

\Rightarrow (\sqrt{a-b}+\sqrt{b})^2>(\sqrt{a})^2

 

Do \sqrt{a},\sqrt{a-b}+\sqrt{b}>0 

 

\Rightarrow \sqrt{a-b}+\sqrt{b}>\sqrt{a}

 

\Leftrightarrow \sqrt{a-b}>\sqrt{a}-\sqrt{b} (đpcm)

 

Vậy \sqrt{a-b}>\sqrt{a}-\sqrt{b}.