K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2023

1/32< 1/2.3

1/42< 1/3.4

...

1/1002< 1/99.100

=> 1/22 + 1/32 + 1/42 + ... + 1/1002< 1/22 + 1/2.3 + 1/3.4 + ... + 1/99.100

A < 1/4 + 1/2 -1/3 + 1/3 - 1/4 +... + 1/99 - 1/100

A < 1/4 + 1/2 -1/100 < 1/4 + 1/2 = 3/4

=> A < 3/4

28 tháng 6 2021

Ta có `3A=1+1/3+....+1/3^99`

`=>3A-A=1-1/3^100`

`=>2A=1-1/3^100`

`=>A=1/2-1/(2.3^100)<1/2`

Hay `A<B`

14 tháng 11 2023

2:

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)

 

24 tháng 12 2020

Ta có: \(3\cdot A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

Do đó: 

\(3\cdot A-A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{100}}\)

hay \(2\cdot A=1-\dfrac{1}{3^{100}}\)

\(\Leftrightarrow A=\left(1-\dfrac{1}{3^{100}}\right):2\)

\(\Leftrightarrow A=\left(1-\dfrac{1}{3^{100}}\right)\cdot\dfrac{1}{2}\)

\(\Leftrightarrow A=\dfrac{1}{2}-\dfrac{1}{2\cdot3^{100}}< \dfrac{1}{2}\)

hay A<B

25 tháng 12 2020

 

 

Ta có: 3⋅A=1+131+132+...+1399

A=13+132+...+13100

Do đó: 

3⋅A−A=1+131+132+...+13100−13−132−...−13100

hay 2⋅A=1−13100

⇔A=(1−13100):2

⇔A=(1−13100)⋅12

⇔A=12−12⋅3100<12

hay A<B

31 tháng 10 2023

a: \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)

\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)

25 tháng 4 2023

b\()\)

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 3/4

25 tháng 4 2023

Tương tự như vậy với câu a\()\)

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 1/2

6 tháng 5 2022

a) \(A=2A-A\)

\(=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)

\(=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2021}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)

\(=1-\dfrac{1}{2^{2022}}\)

b) \(B=\dfrac{20+15+12+17}{60}=\dfrac{4}{5}=1-\dfrac{1}{5}\)

\(A>B\left(Vì\left(\dfrac{1}{2^{2022}}< \dfrac{1}{5}\right)\right)\)

 

6 tháng 5 2022

a) A = 2 A − A = 2 ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 + 1 2 + . . . + 1 2 2021 − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 − 1 2 2022 b) B = 20 + 15 + 12 + 17 60 = 4 5 = 1 − 1 5 A > B ( V ì ( 1 2 2022 < 1 5 ) )