một người đi xe đạp từ Ađến B, họ tính toán: nếu đi đều với vận tốc v1=10km/h thì đến B đúng thời gian quy định, còn nếu đi đều với vận tốc v2 = 12km/h thì đến B sớm hơn thời gian dự định. Tính quãng đường AB và thời điểm mà người đó phải có mặt tại B theo quy định, biết người đó xuất phát từ A lúc 6h30'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Giải :
a.Sau khi tăng tốc thêm 3 km/h thì đến nơi sớm hơn dự kiến là 1h ,mà S là như nhau nên theo bài ra ta có:
V1.t = (V1 +3 ).(t -1).
12.t = (12+3 ).(t -1).
12.t = 15.t -15.
15 = 15.t – 12.t.
5 = t.
b. Gọi t’1 là thời gian đi quãng đường \(\frac{s_1}{t'_1}=\frac{S_1}{V_1}\)
Thời gian sửa xe : t = 15 phút = 1/4 h.
Thời gian đi quãng đường còn lại : t’2 = \(\frac{S_1-S_2}{V_2}\)
Theo bài ra ta có : t1 – (t’1 + 1/4 + t’2) = 30 ph = 1/2 h.
T1 – S1/V1 – 1/4 - (S - S1)/V2 = 1/2. (1).
S/V1 – S/V1 – S1.(1/V1- 1/V2) = 1/2 +1/4 = 3/4 (2).
Từ (1) và (2) suy ra: S1.(1/V1 – 1/V2) = 1- 3/4 = 1/4.
Hay S1 = \(\frac{1}{4}.\frac{V_1-V_2}{V_2-V_1}\)\(=\frac{1}{4}.\frac{12.15}{15-12}=15\left(km\right)\)
a) Thời gian xe đi đến B với vận tốc 60km/h:
\(t_1=t-\dfrac{1}{6}\)
Thời gian xe đi được đến B với vận tốc 40km/h:
\(t_2=t+\dfrac{1}{4}\)
Quãng đường mà xe đi được với vận tốc 60km/h:
\(s_1=v_1t_1=60\left(t-\dfrac{1}{6}\right)\)
Quãng đường mà xe đi được với vận tốc 40km/h
\(s_2=v_2t_2=40\left(t+\dfrac{1}{4}\right)\)
Vì cả hai quãng đường đều bằng nhau nên ta có phương trình:
\(s_1=s_2\)
\(\Leftrightarrow60\left(t-\dfrac{1}{6}\right)=40\left(t+\dfrac{1}{4}\right)\)
\(\Leftrightarrow60t-10=40t+10\)
\(\Leftrightarrow60t-40t=10+10\)
\(\Leftrightarrow20t=20\)
\(\Leftrightarrow t=\dfrac{20}{20}=1\left(h\right)\)
Vậy thời gian dự định đi là \(1h\)
b) Độ dài của quãng đường AC:
\(s_3=v_1.\dfrac{t}{2}=60.\dfrac{1}{2}\)
Độ dài của quãng đường CB:
\(s_4=v_2.\dfrac{t}{2}=40.\dfrac{1}{2}\)
Vì AB=CB+AC nên ta có phương trình:
\(s=s_3+s_4\)
\(\Leftrightarrow s=60.\dfrac{1}{2}+40.\dfrac{1}{2}\)
\(\Leftrightarrow s=30+20\)
\(\Leftrightarrow s=50km\)
Vậy quãng đường AB dài 50km
Ta có: \(v_{tb}=\dfrac{\dfrac{1}{3}s+\dfrac{2}{3}s}{\dfrac{\dfrac{1}{3}s}{6}+\dfrac{\dfrac{2}{3}s}{12}}=\dfrac{s}{\dfrac{1}{18}s+\dfrac{1}{18}s}=9\left(\dfrac{km}{h}\right)\)
Ta có: \(t_{thuc\cdot te}=t_{du\cdot dinh}-\dfrac{20}{60}\)
\(\Leftrightarrow\dfrac{s}{9}=\dfrac{s}{5}-\dfrac{20}{60}\)
\(\Leftrightarrow s=3,75\left(km\right)\)
\(\Rightarrow t=25\) (phút)
a,đổi \(18'=\dfrac{3}{10}h\)
a,\(27'=\dfrac{9}{20}h\)
\(=>SAB=\left(t-\dfrac{3}{10}\right).36=\left(t+\dfrac{9}{20}\right).24\)
\(< =>t=1,8h\)
\(=>Sab=\left(1,8-\dfrac{3}{10}\right).36=54km\)
b, đến B đùng tgian dự định là mất 1,8h
\(=>t1=\dfrac{Sab}{v1}=\dfrac{54}{36}=1,5h\)
\(=>t2=\dfrac{Sab}{v2}=\dfrac{54}{24}=2,25h\)
vậy.......
gọi thời gian dự định là x(giờ)
vận tốc dự định là y(km/h)(x,y>0)
=>quãng đường AB dài x.y(km)
Nếu vận tốc tăng thêm 20km/h thì đến B sớm hơn 1h so với dự định=>(x-1)(y+20)=xy(1)
nếu vận tốc giảm đi 10km/h thì đến B muộn 1h so với dự định
=>(x+1)(y-10)=xy(2)
từ(1)(2) có hệ \(\left\{{}\begin{matrix}\left(x-1\right)\left(y+20\right)=xy\\\left(x+1\right)\left(y-10\right)=xy\end{matrix}\right.\) giải hệ pt =>\(\left\{{}\begin{matrix}x=3\\y=40\end{matrix}\right.\)(TM)
=>quãng đường AB dài xy=3.40=120km
a) Gọi quãng đường AB là x(x>0)km
đổi 15p=0.25h
thời gian đi thực tế là \(\dfrac{x}{12}\)h
thời gian đi dự định là \(\dfrac{x}{12+3}\)h
vì nếu đi vs vận tốc dự định thì sẽ đến sớm hơn thực tế 1 h nên ta có pt
\(\dfrac{x}{12}\)-\(\dfrac{x}{12+3}\)=1
giải pt x=60
vậy quãng đường AB dài 60km
thời gian dự định đi là 60:15=4h
b) gọi quãng đường S1 là a(60>x>0)km
quãng đường S2 là 60-a km
thời gian dự tính đi là 60:12=5h
thời gian đi quãng đường S1 là \(\dfrac{a}{12}\)h
thời gian đi quãng đường S2 là \(\dfrac{60-a}{15}\)h
vì đến sớm hơn so vs dự định là 30p=0.5h
nên ta có pt \(\dfrac{a}{12}\)+\(\dfrac{60-a}{15}\)+0.25=5-0.5
giải pt x=15
vậy quãng đường S1 dài 15 km
Hình như thiếu điều kiện rồi bạn!