CMR: S = \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+\dfrac{4}{4^4}+...+\dfrac{2016}{4^{2016}}+\dfrac{2017}{4^{2017}}\)< \(\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dạng bài tương tự như bài này, bạn áp dụng cách làm vào làm bài của bạn nhé: Câu hỏi của Dao Dao - Toán lớp 7 | Học trực tuyến
\(A=\dfrac{\dfrac{2017}{2}+\dfrac{2017}{3}+\dfrac{2017}{4}+...+\dfrac{2017}{2018}}{\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{1}{2017}}\)
Đặt \(\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{1}{2017}\) là B
\(B=\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{1}{2017}\\ =\dfrac{2017}{1}+1+\dfrac{2016}{2}+1+...+\dfrac{1}{2017}+1-2017\\ =\dfrac{2018}{1}+\dfrac{2018}{2}+...+\dfrac{2018}{2017}-2017\\ =\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\left(2018-2017\right)\\ =\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+1\\ =\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\dfrac{2018}{2018}\\ =2018.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)
\(A=\dfrac{\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2018}}{2018\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)}\\ =\dfrac{2017.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)}{2018.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)}\\ =\dfrac{2017}{2018}\)
Ta có:
\(\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{1}{2016}\)
\(=2016+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{1}{2016}\)
\(=1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{1}{2016}\right)\)
\(=\dfrac{2017}{2}+\dfrac{2017}{3}+\dfrac{2017}{4}+...+\dfrac{2017}{2016}+\dfrac{2017}{2017}\)
\(=2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)
Do đó: \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}\right)}=\dfrac{1}{2017}\)
Vậy...
(a - b)2 \(\ge0\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow a^2+b^2\ge2ab\)
=> \(\frac{1}{a^2+b^2}< \frac{1}{2ab}\left(a;b>0;a\ne b\right)\)
Áp dụng vào bài toán ta có:
\(\frac{1}{1^2+2^2}+\frac{1}{2^2+3^2}+\frac{1}{3^2+4^2}+...+\frac{1}{2016^2+2017^2}< \frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)
\(< \frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)
\(< \frac{1}{2}\left(1-\frac{1}{2017}\right)< \frac{1}{2}\left(đpcm\right)\)
Ta chứng minh được công thức \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{a+b}\)
\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\sqrt{\dfrac{a^4+2a^3b+a^2b^2+2ab^3+b^4}{a^2b^2\left(a+b\right)^2}}\)
\(=\sqrt{\left(\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\right)^2}=\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\)
\(=\dfrac{1}{b}+\dfrac{1}{a}-\dfrac{1}{a+b}\)
\(A=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2016^2}+\dfrac{1}{2017^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\)
\(=\dfrac{1}{1}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{1}+\dfrac{1}{3}-\dfrac{1}{4}+1+\dfrac{1}{2016}-\dfrac{1}{2017}+1+\dfrac{1}{2017}-\dfrac{1}{2018}\)
=>A là số hữu tỉ (ĐPCM)
a.
\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)
c.
\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)
\(\Leftrightarrow\left(\dfrac{x+1}{2019}+1\right)+\left(\dfrac{x+2}{2018}+1\right)=\left(\dfrac{x+3}{2017}+1\right)+\left(\dfrac{x+4}{2016}+1\right)\)
\(\Leftrightarrow\dfrac{x+2020}{2019}+\dfrac{x+2020}{2018}-\dfrac{x+2020}{2017}-\dfrac{x+2020}{2016}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)
\(\Leftrightarrow x=-2020\)(do \(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\ne0\))