Cho tam giac nhon MNP vuong tai M, biet MN= 6 cm va NP= 10cm . tinh do dai canh NP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) AB = 20 cm ( theo Pi - ta - go )
b) tg MNP là tg vuông (MN2 + NP2 = PM2 )
a) Xét tam giác ABC vuông tại A:
Theo đinh lý Py-ta-go ta có : AB2 + AC2 = BC2
AB2 = BC2 - AC2
AB2 = 292 - 212 => AB2 = 841 - 441 = 400 => AB = 20 ( cm )
b) Ta có : 252 + 602 = 652 hay 625 + 3600 = 4225
=> Tam giác MNP là tam giác vuông
Bài 2:
a: AB/3=AC/4=k
=>AB=3k; AC=4k
Ta có: \(AB^2+AC^2=BC^2\)
=>\(25k^2=100\)
=>k=2
=>AB=6cm; AC=8cm
b: Xét ΔBAC có BM là phân giác
nên MA/AB=MC/BC
=>MA/3=MC/5
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{MA}{3}=\dfrac{MC}{5}=\dfrac{8}{8}=1\)
=>MA=3cm
a: NP=5cm
b: Xét ΔNMQ vuông tại M và ΔNKQ vuông tại K có
NQ chung
góc MNQ=góc KNQ
Do đo: ΔMNQ=ΔKNQ
c: Xét ΔMQH vuông tại M và ΔKNP vuông tại K có
QM=QK
\(\widehat{MQH}=\widehat{KQP}\)
Do đo;s ΔMQH=ΔKNP
Suy ra: MH=KP
=>NH=NP
hay ΔNHP cân tại N
tam giác mnp vuông cân tại m nên góc mnp=mpn=45 độ
c/m tam giác amn=tam giác amp(ch-cgv)
\(\Rightarrow\)nma=pma=45 độ
nên nma=mna=45 độ
Theo đl tổng 3 góc thì man=90 độ
Vây tam giác mna vg cân tại a
Theo định lý py ta go ta có :
\(NI^2=MN^2+MI^2\)
\(NI^2=6^2+8^2\)
\(NI^2=100\)
\(\Rightarrow NI=10cm\)
b )
Xét \(\Delta DMI\) và \(DEI\) có :
\(DMI=DEI\left(90\right)\)
\(DI\) cạnh chung
\(I_1=I_2\left(gt\right)\)
\(\Rightarrow\Delta DMI=\Delta DEI\left(ch-gn\right)\)
\(\Rightarrow DM=DE\) ( 2 cạnh t ứng )
a) \(\Delta MNI\) vuông tại M, theo định lí Py-ta-go
Ta có: NI2 = MN2 + MI2
NI2 = 62 + 82
NI2 = 100
\(\Rightarrow NI=\sqrt{100}=10\left(cm\right)\).
b) Xét hai tam giác vuông MID và EID có:
ID: cạnh huyền chung
\(\widehat{I_1}=\widehat{I_2}\left(gt\right)\)
Vậy: \(\Delta MID=\Delta EID\left(ch-gn\right)\)
Suy ra: DM = DE (hai cạnh tương ứng).
c) Ta có: MI = EI (\(\Delta MID=\Delta EID\))
\(\Rightarrow\) \(\Delta MIE\) cân tại I
\(\Rightarrow\) ID là đường phân giác đồng thời là đường trung trực của ME (1)
Ta lại có: hai đường cao MN và AE cắt nhau tại D
\(\Rightarrow\) D là trực tâm của \(\Delta ANI\)
\(\Rightarrow\) ID là đường cao còn lại của \(\Delta ANI\) hay ID \(\perp\) AN (2)
Từ (1) và (2) suy ra: AN // EM (đpcm).
8
Bạn ơi sai đề rồi bạn phải là tính độ dài cạnh MP chứ