Tìm các giá trị của m để phương trình :
\(x^3-3x^2-m=0\)
có 3 nghiệm phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=9-4m>0\Rightarrow m< \dfrac{9}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m\end{matrix}\right.\)
\(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)
\(\Leftrightarrow x_1^2+x_2^2+2+2\sqrt{\left(x_1^2+1\right)\left(x_2^2+1\right)}=27\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\sqrt{\left(x_1x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}=25\)
\(\Leftrightarrow9-2m+2\sqrt{m^2+9-2m+1}=25\)
\(\Leftrightarrow\sqrt{m^2-2m+10}=m+8\left(m\ge-8\right)\)
\(\Leftrightarrow m^2-2m+10=m^2+16m+64\)
\(\Rightarrow m=-3\) (thỏa mãn)
Pt trên có a=1, b=5, c=-3m+2
\(\Delta=b^2-4ac=25-4\cdot1\cdot\left(-3m+2\right)=17+12m\)
Để pt có hai nghiệm phân biệt thì \(\Delta>0\)<=> 17+12m >0 <=>m> 17/12
Theo hệ thức Viet, ta có:
\(\hept{\begin{cases}x_1+x_2=-5\\x_1\cdot x_2=-3m+2\end{cases}}\)
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1\cdot x_2=25-4\left(-3m+2\right)=17+12m=10\)
=> 12m = -7 <=>m=-7/12 (thỏa đkxđ)
Vậy với m=-7/12 thì phương trình có hai nghiệm x1, x2 thỏa (x1 - x2)^2 =10
Phương trình m x 2 – 2(m – 2)x + 3(m – 2) = 0 (a = m; b = – 2(m – 2); c = 3(m – 2))
Ta có
∆ ' = ( m – 2 ) 2 = 3 m ( m – 2 ) = − 2 m 2 + 2 m + 4 = ( 4 – 2 m ) ( m + 1 )
P = x 1 . x 2 = 3 m − 2 m
Phương trình có hai nghiệm phân biệt cùng dấu khi a ≠ 0 Δ > 0 P > 0 ⇔ m ≠ 0 4 − 2 m m + 1 > 0 3 m − 2 m > 0
⇔ m ≠ 0 − 1 < m < 2 m > 2 m < 0 ⇒ − 1 < m < 0
Vậy −1 < m < 0 là giá trị cần tìm
Đáp án: C
Phương trình x 2 – 2(m – 3) x + 8 – 4m = 0 (a ; 1; b’ = −(m – 3); c = 8 – 4m)
Ta có
∆ ' = ( m – 3 ) 2 – ( 8 – 4 m ) = m 2 – 2 m + 1 = ( m – 1 ) 2
S = x 1 + x 2 = 2 ( m – 3 ) ; P = x 1 . x 2 = 8 – 4 m
Vì a = 1 ≠ 0 nên phương trình có hai nghiệm âm phân biệt ⇔ Δ ' > 0 P > 0 S < 0
⇔ m − 1 2 > 0 2 m − 3 < 0 8 − 4 m > 0 ⇔ m ≠ 1 m < 3 m < 2 ⇔ m ≠ 1 m < 2
Vậy m < 2 và m ≠ 1 là giá trị cần tìm.
Đáp án: A
\(x^2-\left(m-2\right)x+m\left(m-3\right)=0\)
\(\Leftrightarrow x^2-\left(m-2\right)x+\left(m^2-3m\right)=0\) (*)
\(\Delta'=\left(m-2\right)^2-\left(m^2-3m\right)\)
\(=m^2-4m+4-m^2+3m\)
\(=4-m\). Để (*) có 2 nghiệm phân biệt suy ra \(\Delta'>0\)
\(\Rightarrow4-m>0\Rightarrow m< 4\)
Vậy với m=4 (*) có 2 nghiệm phân biệt
\(x-4\sqrt{x+3}+m=0\)
\(\Leftrightarrow x+3-4\sqrt{x+3}-3+m=0\left(1\right)\)
\(đăt:\sqrt{x+3}=t\left(t\ge0\right)\)
\(\left(1\right)\Leftrightarrow t^2-4t-3+m=0\Leftrightarrow f\left(t\right)=t^2-4t-3=-m\left(2\right)\)
\(\left(1\right)-có-2ngo-phân-biệt\Leftrightarrow\left(2\right)có-2ngo-phân-biệt-thỏa:t\ge0\)
\(\Rightarrow f\left(0\right)=-3\)
\(\Rightarrow f\left(t\right)min=\dfrac{-\Delta}{4a}=-7\Leftrightarrow t=2\)
\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)
\(t^2-4t-3+m=0\Leftrightarrow t^2-4t-3=-m\)
\(có-2nghiệm-pb-trên[0;\text{+∞})\)
\(xét-bảng-biến-thiên-củaf\left(t\right)=t^2-4t-3,trên[0;\text{+∞})\)
dựa vào bảng biến thiên ta thấy số nghiệm của phương trình f(t)
là số giao điểm của đường thẳng y=-m
\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)
( m 2 + m + 3 ) x 2 + ( 4 m 2 + m + 2 ) x + m = 0 có a = m 2 + m + 3 > 0, ∀m và có b = 4 m 2 + m + 2 > 0, ∀m, nên ab > 0, ∀m. Vì vậy không có giá trị nào của m để phương trình đã cho có hai nghiệm dương phân biệt.
Phương trình đã cho tương đương với:
\(x^3-3x^2=m\)
Khảo sát và lập bẳng biến thiên hàm số vế trái ta có:
\(y=x^3-3x^2\)
Đạo hàm: \(y'=3x^2-6x\)
\(y'=0\Leftrightarrow x=0,x=2\)
Lập bảng biến thiên:
Nhìn vào bảng biến thiên ta thấy để phương trình \(x^3-3x^2=m\) có 3 nghiệm phân biệt thì: \(-4< m< 0\)