2:Cho các đa thức: P(x) = 15 - 4x3 + 3x2 + 2x – x 3 - 10 Q(x) = 5 + 4x3 + 6x2 – 5x - 9x3 +7x a) Thu gọn mỗi đa thức trên. b) Tính giá trị của đa thức P(x) + Q(x) tại x = 1 2 . c) Tìm x để Q(x) – P(x) = 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P\left(x\right)=-5x^3+3x^2+2x+5\)
\(Q\left(x\right)=-5x^3+6x^2+2x+5\)
b: Q(x)-P(x)=6
\(\Leftrightarrow-5x^3+6x^2+2x+5+5x^3-3x^2-2x-5=6\)
=>3x2=6
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
P(x)=15 - 4x3 + 3x2 + 2x - x3 - 10
và Q(x)=5 + 4x3 + 6x2 - 5x - 9x3 + 7x
a) P(x)= -5x^3 + 3x^2 + 2x + 5.
Q(x)= -5x^3 + 6x^2 + 2x + 5.
b)
P(x)= -5x^3 + 3x^2 + 2x + 5 tại x= 1/2.
P(x)= -5 . 1/2^3 + 3 . 1/2^2 + 2 . 1/2 +5 = 49/8.
Q(x)= -5x^3 + 6x^2 + 2x + 5 tại x= 1/2
Q(x)= -5 . 1/2^3 + 6 . 1/2^2 + 2 . 1/2 +5= 55/8.
c)
P(x) - Q(x)= (-5x^3 + 3x^2 + 2x + 5) - (-5x^3 + 6x^2 + 2x + 5)
Kết quả -3x^2.
Nhớ nhấn like đấy
a)\(Q\left(x\right)=4x^3+x^2+\left(7x-2x\right)+\left(9-3\right)=4x^3+x^2+5x+6\)
hệ số tự do : 6
hệ số cáo nhất : 6
b) thay x = 2 vào Q(x) ta đa
\(Q\left(2\right)=4.2^3+2^2+5.2+6=4.8+4+10+6\)
\(Q\left(2\right)=32+4+10+6=52\)
\(a,Q_{\left(x\right)}=-4x^3+2x-2+2x-x^2-1\\ Q_{\left(x\right)}=-4x^3-x^2+4x-3\\ P_{\left(x\right)}=4x^3-3x+x^2+7+x\\ P_{\left(x\right)}=4x^3+x^2-2x+7\)
\(b,M_{\left(x\right)}=P_{\left(x\right)}+Q_{\left(x\right)}\\ M_{\left(x\right)}=4x^3+x^2-2x+7-4x^3-x^2+4x-3\\ M_{\left(x\right)}=2x+4\)
\(N_{\left(x\right)}=4x^3+x^2-2x+7+4x^2+x^2-4x+3\\ N_{\left(x\right)}=8x^3+2x^2-6x+10\)
\(c,M_{\left(x\right)}=0\\ \Rightarrow2x+4=0\\ \Rightarrow2x=-4\\ \Rightarrow x=-2\)
a: \(P\left(x\right)=4x^3+x^2-2x+7\)
\(Q\left(x\right)=-4x^3-x^2+4x-3\)
b: \(M\left(x\right)=4x^3+x^2-2x+7-4x^3-x^2+4x-3=2x+4\)
\(N\left(x\right)=8x^3+2x^2-6x+10\)
c: Đặt M(x)=0
=>2x+4=0
hay x=-2
a: \(P\left(x\right)=-5x^3+3x^2+2x+5\)
\(Q\left(x\right)=-5x^3+6x^2+x+5\)
b: \(H\left(x\right)=Q\left(x\right)+P\left(x\right)=-10x^3+9x^2+3x+10\)
Khi x=1/2 thì \(H\left(x\right)=-10\cdot\dfrac{1}{8}+\dfrac{9}{4}+\dfrac{3}{2}+10=\dfrac{25}{2}\)
a: \(P\left(x\right)=-5x^3+3x^2+2x+5\)
\(Q\left(x\right)=-5x^3+6x^2+2x+5\)
b: \(H\left(x\right)=P\left(x\right)+Q\left(x\right)=-10x^3+9x^2+4x+10\)
\(H\left(\dfrac{1}{2}\right)=-10\cdot\dfrac{1}{8}+\dfrac{9}{4}+2+10=13\)
c: Q(x)-P(x)=6
\(\Leftrightarrow3x^2=6\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
a: \(P\left(x\right)=2x^3-x^3+x^2+3x-2x+2=x^3+x^2+x+2\)
\(Q\left(x\right)=3x^3-4x^3-4x^2+5x^2+3x-4x+1=-x^3+x^2-x+1\)
b: M(x)=P(x)+Q(x)
\(=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)
N(x)=P(x)-Q(x)
\(=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)
c: Vì \(2x^2+3>0\forall x\)
nên M(x) vô nghiệm
a, \(P\left(x\right)=x^3+x^2+x+2\)
\(Q\left(x\right)=-x^3+x^2-x+1\)
b, \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)
\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)
c, giả sử \(M\left(x\right)=2x^2+3=0\)( vô lí )
vì 2x^2 >= 0 ; 2x^2 + 3 > 0
Vậy giả sử là sai hay đa thức M(x) ko có nghiệm
a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm
mấy cái sau x là mũ nhé
a, \(P\left(x\right)=15-4x^3+3x^2+2x-x^3-10=-5x^3+3x^2+2x+5\)
\(Q\left(x\right)=5+4x^3+6x^2-5x-9x^3+7x=-5x^3+6x^2+2x+5\)
b, \(P\left(x\right)+Q\left(x\right)=-5x^3+3x^2+2x+5-5x^3+6x^2+2x+5\)
\(=-10x^3+9x^2+4x+10\)Thay x = 1/2 vào ta được :
\(=-\frac{10.1}{8}+\frac{9.1}{4}+\frac{4.1}{2}+10=-\frac{5}{4}+\frac{9}{4}+2+10=1+2+10=13\)
c, \(P\left(x\right)-Q\left(x\right)=-5x^3+3x^2+2x+5+5x^3-6x^2-2x-5=6\)
\(\Leftrightarrow-3x^2=6\Leftrightarrow x^2=-2\)vô lí vì \(x^2\ge0;-2< 0\)