K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

Vì :

|x - y| cùng tính chất chẵn lẻ với x - y

|y - z| cùng tính chất chẵn lẻ với y - z

|z - t| cùng tính chất chẵn lẻ với z - t

|t - x| cùng tính chất chẵn lẻ với t - x

=> |x - y| + |y - z| + |z - t| + |t - x| cùng tính chất chẵn lẻ với (x - y) + (y - z) + (z - t) + (t - x)

Mà (x - y) + (y - z) + (z - t) + (t - x) = (x - x) + (y - y) + (z - z) + (t - t) = 0 là số chẵn

=> |x - y| + |y - z| + |z - t| + |t - x| là số chẵn

Mà 2017 là số lẻ => |x - y| + |y - z| + |z - t| + |t - x| ≠ 2017

=> x ; y ; z ; t \(\in\phi\)

9 tháng 4 2017

Ta có :

\(\left|x-y\right|\) có cùng tính chất chẵn lẻ với \(x-y\)

\(\left|y-z\right|\) có cùng tính chất chẵn lẻ với \(y-z\)

\(\left|z-t\right|\)  có cùng tính chất chẵn lẻ với \(z-t\)

\(\left|t-x\right|\)  có cùng tính chất chẵn lẻ với \(t-x\)

\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) có cùng tính chất chẵn lẻ với \(x-y+y-z+z-t+t-x=0\)

\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) luôn chẵn

Mà 2015 lẻ \(\Rightarrow\) không có số nguyên x ; y ; z ; t nào thỏa mãn đề bài

8 tháng 3 2020

                                                     Bài giải

Vì :

|x - y| cùng tính chất chẵn lẻ với x - y

|y - z| cùng tính chất chẵn lẻ với y - z

|z - t| cùng tính chất chẵn lẻ với z - t

|t - x| cùng tính chất chẵn lẻ với t - x

=> |x - y| + |y - z| + |z - t| + |t - x| cùng tính chất chẵn lẻ với (x - y) + (y - z) + (z - t) + (t - x)

Mà (x - y) + (y - z) + (z - t) + (t - x) = (x - x) + (y - y) + (z - z) + (t - t) = 0 là số chẵn

=> |x - y| + |y - z| + |z - t| + |t - x| là số chẵn

Mà 2017 là số lẻ => |x - y| + |y - z| + |z - t| + |t - x| ≠ 2017

=> x ; y ; z ; t ∈ ϕ

8 tháng 3 2020

Không mất tính tổng quát, giả sử x ≥ y ≥ z ≥ t (x, y, z, t thuộc Z)

=> | x - y | = x - y

=> | y - z | = y - z

=> | z - t | = z - t

=> | t - x | = t - x

<=> (x - y) + (y - z) + (z - t) + (t - x) = x - y + y - z + z - t + t - x = 0 (là số chẵn \(\forall\) x, y, z, t nguyên)

Mà 2017 là một số lẻ => x, y, z, t\(\in\varnothing\)

8 tháng 1 2018

Ta có:\(\left|n\right|+n=\left[{}\begin{matrix}2n\text{ với }n\ge0\\0\text{ với }n< 0\end{matrix}\right.\Rightarrow n⋮2\forall n\left(\circledast\right)\)

\(|x - y|+|y-z|+|z-t|+|t-\color{red}{x}|=2017\)

\(\Leftrightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-t\right|+z-t+\left|t-z\right|+t-z=2017\)

Từ \(\circledast\) ta có:

\(\left\{{}\begin{matrix}\left|x-y\right|+x-y⋮2\\\left|y-z\right|+y-z⋮2\\\left|z-t\right|+z-t⋮2\\\left|t-x\right|+t-x⋮2\end{matrix}\right.\)

\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-t\right|+z-t+\left|t-z\right|+t-z⋮2\)

\(2017⋮̸2\) nên không tìm được \(x,y,z,t \in \mathbb{Z}\) thỏa mãn.

23 tháng 11 2017

Giúp mk với mọi người