Cho ABC vuông tại A có AB = 3 cm, AC = 4 cm, đường cao AH và tia phân giác BD (D AC) của góc B cắt nhau tại I.
a) Chứng minh: IA.BH = IH.BA
b) Chứng minh: AB2 = BH.BC; Tính AH, CH
c) Chứng minh: HI.DC = AD . AI
d) Qua B kẻ đường thẳng song song v i AC cắt đường thẳng AH tại E. Tính BE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBHA có BI là phân giác
nên IA/IH=BA/BH
hay \(IA\cdot BH=BA\cdot IH\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
c: BC=10cm
Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: \(\dfrac{S_{HBA}}{S_{ABC}}=\left(\dfrac{BA}{BC}\right)^2=\left(\dfrac{3}{5}\right)^2=\dfrac{9}{25}\)
a/ + Áp dụng hệ thức giữa cạnh và hình chiếu trong ΔΔABC vuông tại A có: AB2 = BC . BH => BH = AB2 : BC Hay BH = 92 : 15 => BH = 5,4 cm + Xét ΔΔABC vuông tại A có : HC = BC - BH Hay HC = 15 - 5,4 = 9,6 => HC = 9,6 cm + Áp dụng hệ thức liên quan đến đường cao trong ΔΔABC vuông tại A có : AH2 = BH . HC Hay AH2 = 5,4 . 9,6 AH2 = 51,84 => AH = √51,8451,84 = 7,2 cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB\cdot AC=AH\cdot BC\)
\(\Leftrightarrow AH\cdot15=9\cdot12=108\)
hay AH=7,2(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=12^2-7.2^2=92.16\)
hay CH=9,6(cm)
Vậy: AH=7,2cm; CH=9,6cm
a: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BE là phân giác
=>AE/AB=CE/BC
=>AE/3=CE/5=16/8=2
=>AE=6cm; CE=10cm
b: Xet ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng vơi ΔHCA
c: ΔABC vuông tại A
mà AH là đường cao
nên BA^2=BH*BC
a: Xét ΔBAH có BI là phân giác
nên IA/BA=IH/BH
=>IA*BH=BA*IH
c: HI/HA=BH/BA
AD/DC=BA/BC
mà BH/BA=BA/BC
nên HI/IA=AD/DC
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔABC vuông tại A có AH vuông góc BC
nên AB^2=BH*BC
ΔABC vuông tại A có AH vuông góc BC
nên AH^2=HB*HC
lần đầu ng