Cho hình chữ nhật ABCD có AB = 2AD. Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE
a) Tứ giác ADFE là hình gì ? Vì sao ?
b) Tứ giác EMFN là hình gì ? Vì sao ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) E, F là trung điểm AB, CD ⇒ AE = EB = AB/2, DF = FC = CD/2.
Ta có: AB = CD = 2AD = 2BC
⇒ AE = EB = BC = CF = FD = DA.
+ Tứ giác ADFE có AE // DF, AE = DF
⇒ ADFE là hình bình hành.
Hình bình hành ADFE có Â = 90º
⇒ ADFE là hình chữ nhật.
Hình chữ nhật ADFE là hình chữ nhật có AE= AD
⇒ ADFE là hình vuông.
b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành
Do đó DE // BF
Tương tự: AF // EC
Suy ra EMFN là hình bình hành
Theo câu a, ADFE là hình vuông nên ME = MF, ME ⊥ MF.
Hình bình hành EMFN có M̂ = 90º nên là hình chữ nhật.
Lại có ME = MF nên EMFN là hình vuông.
Sai đề bạn ơi..
Sao lại là : " Gọi E ; F lần lượt là trung điểm của BF và CE " ????
bạn sửa lại đi
Vì ABCD là hình chữ nhật (hcn) => EB=CD , AD=BC.
Mà E là trung diểm ( tđ) của AB , F là tđ của DC
=> AE=EB=DF=FC.
mà AB= 2AD ( giả thiết ( gt)) , AE=2AB , AB=DC
=>AD=AE
=> AEFD là hình vuông ( dấu hệu 1 SGK toán 8 trang 107).
b.chứng minh tương tự ta có ABCF là hình vuông.
Ta có 2 hình vuông (hv) AEFD và ABCF có cạnh chung là EF
=> hv AEFD = hv ABCF
Vì 2 hv trên = nhau => AF=FB=CE=DE( các đường chéo = nhau , cắt nhau tại trung điểm mỗi đường)
=> EM=MF=FN=EN (1)
Trong hình vuông , 2 đường chéo vuông góc với nhau
=> EM vuông góc với AF
\(\Rightarrow\widehat{EMF}=90^o\) (2)
Từ (1) và (2) =>EMFN là hình vuông ( đpcm)
mk vẽ hình hơi xấu đó.
..
a) E, F là trung điểm AB, CD ⇒ AE = EB = AB/2, DF = FC = CD/2.
Lại có AB = CD = 2.AD = BC.
⇒ AE = EB = BC = CF = FD = DA.
+ Tứ giác ADFE có AE // DF, AE = DF
⇒ ADFE là hình bình hành.
Hình bình hành ADFE có Â = 90º
⇒ ADFE là hình chữ nhật.
Hình chữ nhật ADFE là hình chữ nhật có AE= AD
⇒ ADFE là hình vuông.
b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành
Do đó DE // BF
Tương tự: AF // EC
Suy ra EMFN là hình bình hành
Theo câu a, ADFE là hình vuông nên ME = MF, ME ⊥ MF.
Hình bình hành EMFN có M̂ = 90º nên là hình chữ nhật.
Lại có ME = MF nên EMFN là hình vuông.
a) E, F là trung điểm AB, CD => .\(AE=EB=\frac{AB}{2}\) ; \(DF=FC=\frac{CD}{2}\)
Ta có: AB = CD = 2AD = 2BC
=> AE = EB = BC = CF = FD = DA.
+ Tứ giác ADFE có AE // DF, AE = DF
⇒ ADFE là hình bình hành.
Hình bình hành ADFE có \(\widehat{A}=90^o\)
=> ADFE là hình chữ nhật.
Hình chữ nhật ADFE là hình chữ nhật có AE = AD
=> ADFE là hình vuông.
b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành
Do đó DE // BF
Tương tự: AF // EC
Suy ra EMFN là hình bình hành
Theo câu a, ADFE là hình vuông nên ME = MF, \(ME\perp MF\)
Hình bình hành EMFN có \(\widehat{M}=90^o\)nên là hình chữ nhật.
Lại có ME = MF nên EMFN là hình vuông.
a) E, F là trung điểm AB, CD ⇒ AE = EB = AB/2, DF = FC = CD/2.
Lại có AB = CD = 2.AD = BC.
⇒ AE = EB = BC = CF = FD = DA.
+ Tứ giác ADFE có AE // DF, AE = DF
⇒ ADFE là hình bình hành.
Hình bình hành ADFE có Â = 90º
⇒ ADFE là hình chữ nhật.
Hình chữ nhật ADFE là hình chữ nhật có AE= AD
⇒ ADFE là hình vuông.
b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành
Do đó DE // BF
Tương tự: AF // EC
Suy ra EMFN là hình bình hành
Theo câu a, ADFE là hình vuông nên ME = MF, ME ⊥ MF.
Hình bình hành EMFN có M̂ = 90º nên là hình chữ nhật.
Lại có ME = MF nên EMFN là hình vuông.
a) E, F là trung điểm AB, CD =>.\(AE=EB=\frac{AB}{2},DF=FC=\frac{CD}{2}\)
Ta có: AB = CD = 2AD = 2BC
=> AE = EB = BC = CF = FD = DA.
+ Tứ giác ADFE có AE // DF, AE = DF
=> ADFE là hình bình hành.
Hình bình hành ADFE có \(\widehat{A}=90^o\)
=> ADFE là hình chữ nhật.
Hình chữ nhật ADFE là hình chữ nhật có AE= AD
=> ADFE là hình vuông.
b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành
Do đó DE // BF
Tương tự: AF // EC
Suy ra EMFN là hình bình hành
Theo câu a, ADFE là hình vuông nên ME = MF, \(ME\perp MF\)
Hình bình hành EMFN có \(\widehat{M}=90^o\)nên là hình chữ nhật.
Lại có ME = MF nên EMFN là hình vuông.
a) Tứ giác ADFE có AE // DF, AE = DF nên là hình bình hành.
Hình bình hành ADFE có = 900 nên là hình chữ nhật.
Hình chữ nhật ADFE có AE = AD nên là hình vuông.
b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành.
Do đó DE // BF
Tương tự AF // EC
Suy ra EMFN là hình bình hành.
Theo câu a, ADFE là hình vuông nên ME = MF, ME ⊥ MF.
Hình bình hành EMFN có = 900 nên là hình chữ nhật, lại có ME = MF nên là hình vuông
a: Xét tứ giác ADFE có
AE//DF
AE=DF
AE=AD
góc EAD=90 độ
Do đó: AEFD là hình vuông
b: Xét tứ giác EBCF có
EB//CF
EB=CF
góc EBC=90 độ
EB=BC
Do đó: EBCF là hình vuông
=>EN=FN và góc ENF=90 độ; N là trung điểm của CF
Xét ΔEDC co
EF là trung tuyên
EF=DC/2
Do đo: ΔEDC vuông tại E
Xét tứ giác ENFM có
góc ENF=góc EMF=góc MEN=90 độ
EN=NF
Do đó; ENFM là hình vuông
Lời giải:a) Vì $ABCD$ là hình chữ nhật nên $AB=CD$
$\Rightarrow \frac{AB}{2}=\frac{CD}{2}$$\Leftrightarrow AE=DF$
$AB\parallel CD\Rightarrow AE\parallel DF$
Như vậy, tứ giác $ADFE$ hai cạnh đối $AE, DF$ song song và bằng nhau nên $ADFE$ là hình bình hành.
Mà $\widehat{D}=90^0$ nên $ADFE$ là hình chữ nhật.
Hình chữ nhật $ADFE$ có 2 cạnh kề $AD=\frac{AB}{2}=AE$ nên $ADFE$ là hình vuông.
b)
Vì $ADFE$ là hình vuông nên $AD\perp AF\Rightarrow \widehat{EMF}=90^0$. Đồng thời, $\widehat{DEF}=45^0$
Tương tự: $EBCF$ cũng là hình vuông $\Rightarrow \widehat{ENF}=90^0; \widehat{FEC}=45^0$
Từ đây suy ra $\widehat{MEN}=\widehat{DEF}+\widehat{FEC}=90^0=\widehat{EMF}=\widehat{ENF}=90^0$ nên tứ giác $EMFN$ là hình chữ nhật.
Mặt khác: Vì $AEDF, BEFC$ là 2 hình vuông bằng nhau (do $AE=EB$) nên đường chéo $ED=EC\Rightarrow EM=EN$
Hình chữ nhật $EMFN$ có 2 cạnh kề $EM=EN$ nên $EMFN$ là hình vuông.
a) Tứ giác ADFE có AE // DF, AE = DF nên là hình bình hành.
Hình bình hành ADFE có góc A = 900 nên là hình chữ nhật.
Hình chữ nhật ADFE có AE = AD nên là hình vuông.
b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành.
Do đó DE // BF
Tương tự AF // EC
Suy ra EMFN là hình bình hành.
Theo câu a, ADFE là hình vuông nên ME = MF, ME ⊥ MF.
Hình bình hành EMFN có góc M = 900 nên là hình chữ nhật, lại có ME = MF nên là hình vuông.
a) Tứ giác ADFE có AE // DF, AE = DF nên là hình bình hành.
Hình bình hành ADFE có ˆAA^ = 900 nên là hình chữ nhật.
Hình chữ nhật ADFE có AE = AD nên là hình vuông.
b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành.
Do đó DE // BF
Tương tự AF // EC
Suy ra EMFN là hình bình hành.
Theo câu a, ADFE là hình vuông nên ME = MF, ME ⊥ MF.
Hình bình hành EMFN có ˆMM^ = 900 nên là hình chữ nhật, lại có ME = MF nên là hình vuông