K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Lời giải:

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

24 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

21 tháng 6 2021

a) Cần chứng minh \(\dfrac{1-cos\alpha}{sin\alpha}=\dfrac{sin\alpha}{1+cos\alpha}\)

\(\Rightarrow sin^2\alpha=\left(1-cos\alpha\right)\left(1+cos\alpha\right)\Rightarrow sin^2\alpha=1-cos^2\alpha\)

\(\Rightarrow sin^2\alpha+cos^2\alpha=1\)

Giả sử tam giác ABC vuông tại A

Ta có: \(\left\{{}\begin{matrix}sin^2B=\dfrac{AC^2}{BC^2}\\cos^2B=\dfrac{AB^2}{BC^2}\end{matrix}\right.\Rightarrow sin^2B+cos^2B=\dfrac{AC^2+AB^2}{BC^2}=\dfrac{BC^2}{BC^2}=1\)

 

 

21 tháng 6 2021

a)\(\dfrac{1-cosa}{sina}=\dfrac{sina}{1+cosa}\)

<=>\(\left(1-cosa\right)\left(1+cosa\right)=sin^2a\)

<=>\(1-cos^2a=sin^2a\) (lđ)

b)Ta có VT=\(\dfrac{cosa}{1+sina}+tga=\dfrac{cosa}{1+sina}+\dfrac{sina}{cosa}=\dfrac{cos^2a+sin^2a+sina}{\left(1+sina\right)cosa}=\dfrac{1+sina}{\left(1+sina\right)cosa}=\dfrac{1}{cosa}=vp\left(dpcm\right)\)

 

Câu 1: 

\(1+\cot^2a=\dfrac{1}{\sin^2a}\)

nên \(\dfrac{1}{\sin^2a}=1+5^2=26\)

\(\Leftrightarrow\sin^2a=\dfrac{1}{26}\)

\(\Leftrightarrow\sin a=\dfrac{\sqrt{26}}{26}\)

\(\cos a=\sqrt{1-\dfrac{1}{26}}=\dfrac{5\sqrt{26}}{26}\)

\(A=\dfrac{\sin a+\cos a}{\sin a-\cos a}=\left(\dfrac{\sqrt{26}+5\sqrt{26}}{26}\right):\left(\dfrac{\sqrt{26}-5\sqrt{26}}{26}\right)\)

\(=\dfrac{6\sqrt{26}}{-4\sqrt{26}}=\dfrac{-3}{2}\)

Chọn D

7 tháng 6 2018

a, Sử dụng tích chéo:

Ta có:

+/ \(\cos\alpha.\cos\alpha=\cos^2\alpha\) (1)

+/ \(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)=1-\sin^2\alpha\)

\(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow1-\sin^2\alpha=\cos^2\alpha\)

hay \(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)=\cos^2\alpha\) (2)

Từ (1), (2)

\(\Rightarrow\)\(\cos\alpha.\cos\alpha=\)\(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)\)

\(\Rightarrow\)\(\dfrac{\cos\alpha}{1-\sin\alpha}=\dfrac{1+\sin\alpha}{\cos\alpha}\) (đpcm)

b/ xem lại đề

7 tháng 6 2018

sr bạn nha mình ghi thiếu đằng sau biểu thức đó là = 4

25 tháng 8 2018

a) ta có : \(sin^2\alpha+cos^2\alpha=1\Leftrightarrow sin^2\alpha=1-cos^2\alpha\)

\(\Leftrightarrow sin^2\alpha=\left(1-cos\alpha\right)\left(1+cos\alpha\right)\Leftrightarrow\dfrac{sin\alpha}{1+cos\alpha}=\dfrac{1-cos\alpha}{sin\alpha}\left(đpcm\right)\)

b) ta có : \(tan^2\alpha-sin^2\alpha=sin^2\alpha\left(\dfrac{1}{cos^2\alpha}-1\right)=sin^2\alpha\left(\dfrac{1-cos^2\alpha}{cos^2\alpha}\right)\)

\(=sin^2\alpha.\dfrac{sin^2\alpha}{cos^2\alpha}=sin^2\alpha.tan^2\alpha\left(đpcm\right)\)

25 tháng 8 2018

Sao ko chuyển về cái kia nó dễ hiểu hơn :v AHihi

\(sin^2a=\left(1-cosa\right)\left(1+cosa\right)\Leftrightarrow sin^2a=1-cos^2a\Leftrightarrow sin^2a+cos^2a=1\)

24 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

24 tháng 4 2017

a) (H.a)

– Dựng góc vuông xOy.

-Trên tia Ox đặt OA=2

– Dựng đường tròn (A;3) cắt tia Oy tại B

Khi đó góc OBA = α

Thật vậy 2016-11-05_160309

b) (H.b)

Tương tự:

b) (H.b)

c) (H.c)

d) (H.d).

4 tháng 11 2018

\(\)cho mình hỏi là c=4cm nghĩa là BC = 4cm hay AC = 4cm

AB= 8cm hay AC= 8cm. Còn nữa đây là tam giác j?????

17 tháng 11 2022

Bài 1:

c=4cm nên AB=4cm

a=8cm nên BC=8cm

Xét ΔABC có \(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)

=>4^2+8^2-AC^2=2*4*8*1/2=32

=>AC^2=48

=>\(AC=4\sqrt{3}\left(cm\right)\)

AB^2+AC^2=BC^2

nên ΔABC vuông tại A 

=>góc C=90-60=30 độ