Tính các góc của hình bình hành ABCD, biết :
a) \(\widehat{A}=110^0\)
b) \(\widehat{A}-\widehat{B}=20^0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A + B = 180 độ
Mà A - B = 10 độ
=> A = 10 + B
=> 10 + B + B = 180
=> 2B = 170
=> B = 85 độ
=> A = 85 + 10 = 95 độ
Mà trong hình bình hành có 2 cặp góc đối = nhau
=> A = C = 95 độ
=> B = D = 85 độ
a) \(\widehat{A}=100^o\Rightarrow\widehat{C}=\widehat{A}=100^o\Rightarrow\widehat{B}=\widehat{D}=\frac{\left(360^o-100^o\cdot2\right)}{2}=80^o\)
b)\(A+B=180^o;A-B=20^o\Rightarrow A=\frac{\left(180^o+20^o\right)}{2}=100^o\Rightarrow B=80^o\)
\(A=C;B=D\)
Bài giải:
Ta có 200; 1800
Từ 200
=> = 200 +
Nên 200 + +=200 +2 =1800
=> 2=1600 => = 800
Thay = 800 vào = 200 + ta được =200 + 800 = 1000
Lại có ; 1800
nên
Ta có :AB//CD\(\Rightarrow\widehat{A}+\widehat{D}=180^o\) (do 2 góc ở vị trí trong cùng phía )
Từ \(\widehat{A}-\widehat{D}=20^o\Rightarrow\widehat{A}=20^o+\widehat{D}\) \(^{\left(1\right)}\)
Nên \(\widehat{A}+\widehat{D}=20^o+\widehat{D}+\widehat{D}=20^o+2.\widehat{D}=180^o\)
\(\Rightarrow2\widehat{D}=160^o\Rightarrow\widehat{D}=80^o\)
Thay \(\widehat{D}=80^o\) vào \(^{\left(1\right)}\) , ta được:
\(\widehat{A}=20^o+80^o=100^o\)
Lại có:\(\widehat{B}+\widehat{C}=180^o\) (do 2 góc ở vị trí trong cùng phía )
và \(\widehat{B}=2.\widehat{C}\)
nên \(2.\widehat{C}+\widehat{C}=180^o\) hay \(3.\widehat{C}=180^o\Rightarrow\widehat{C}=60^o\)
Do đó: \(\widehat{B}=2.\widehat{C}=2.60^o=120^o\)
Vậy \(\widehat{A}=100^o;\widehat{B}=120^o;\widehat{C}=60^o;\widehat{D}=80^o\)
a: góc A-góc D=20 độ
góc A+góc D=180 độ
=>góc A=(20+180)/2=100 độ và góc D=180-100=80 độ
góc B=2*góc C
góc B+góc C=180 độ
=>góc B=2/3*180=120 độ; góc C=180-120=60 độ
b: góc B-góc C=20 độ
góc B+góc C=180 độ
=>góc B=(180+20)/2=100 độ và góc C=80 độ
=>góc A=100+20=120 độ
=>góc D=60 độ
a) \(\widehat{A}=\widehat{C}=110^0;\widehat{B}=\widehat{D}=70^0\)
b) \(\widehat{A}=\widehat{C}=100^0;\widehat{B}=\widehat{D}=80^0\)