a) Dùng diện tích để chứng tỏ : \(\left(a+b\right)^2=a^2+2ab+b^2\)
b) Dùng diện tích để chứng tỏ : \(\left(a-b\right)^2=a^2-2ab+b^2\) với điều kiện \(b< a\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựng hình vuông ABCD có cạnh bằng a
Trên cạnh AB lấy điểm E sao cho BE = b
Từ E dựng đường thẳng song song BC cắt CD tại G
Ta có: CG = b, CE = ( a – b ), GD = ( a – b )
Trên cạnh AD lấy điểm K sao cho AK = b
Từ K kẻ đường thẳng song song với AB cắt BC tại H và cắt EG tại F
Ta có: KD = ( a – b ), BH = b
Hình vuông ABCD có diện tích bằng a 2
Hình vuông DKFG có diện tích bằng a - b 2
Hình chữ nhật AEFK có diện tích bằng ( a – b ) b
Hình vuông EBHF có diện tích bằng b 2
Hình chữ nhật HCGF có diện tích bằng ( a – b ).b
S A B C D = S D K F G + S A E F K = S E B H F + S H C G F
nên a - b 2 + a - b b + a - b b + b 2 = a 2
⇒ a - b 2 = a 2 - 2 a b + b 2
dùng diện tích để chứng tỏ (a+b) 2 = a2 + 2ab + b2
dùng diện tích để chứng tỏ (a-b)2 = a2 - 2ab + b2
Bài 2.2 - Bài tập bổ sung Sách bài tập - trang 159 - Toán lớp 8 | Học trực tuyến
Dựng hình vuông ABCD có cạnh bằng (a + b )
Trên cạnh AB dựng điểm E sao cho AE = a, EB = b, trên cạnh BC dựng điểm H sao cho BH = b, HC = a, trên cạnh CD dựng điểm G sao cho CG = b, GD = a, trên cạnh DA dựng điểm K sao cho DK = a, KA = b, GE cắt KH tại F.
Ta có : diện tích hình vuông ABCD bằng a + b 2
Diện tích hình vuông DKFG bằng a 2
Diện tích hình chữ nhật AKFE bằng a.b
Diện tích hình vuông EBHF bằng b 2
Diện tích hình chữ nhật HCGF bằng a.b
S A B C D = S D K F G + S A K E F + S E B H F + S H C G F
Vậy ta có : a + b 2 = a 2 + 2 a b + b 2
\(a,b)\)Ta có: \(\left(a\pm b\right)^2\)
\(=\left(a\pm b\right)\left(a\pm b\right)\)
\(=a^2\pm ab\pm ab+b^2\)
\(=a^2\pm ab+b^2\)
\(c)\)\(\left(a+b\right)\left(a-b\right)=a^2-ab+ab-b^2=a^2-b^2\)
Lời giải:
Kiểu như bạn muốn biến đổi $a^4-b^4$ về dạng có liên quan đến $a+b,ab$ ấy hả?
$a^4-b^4=(a^2-b^2)(a^2+b^2)=(a-b)(a+b)[(a+b)^2-2ab]$
Nếu $a^4\geq b^4$ thì: $a^4-b^4=\sqrt{(a-b)^2}(a+b)[(a+b)^2-2ab]$
$=\sqrt{(a+b)^2-4ab}(a+b)[(a+b)^2-2ab]$
Nếu $a^4< b^4$ thì $a^4-b^4=-\sqrt{(a+b)^2-4ab}(a+b)[(a+b)^2-2ab]$
\(a\left(b^2+c^2\right)+b\left(a^2+c^2\right)+c\left(a^2+b^2\right)+2abc\)
\(=ab^2+ac^2+ba^2+bc^2+ca^2+cb^2+2abc\)
\(=\left(ab^2+ba^2\right)+\left(ac^2+bc^2\right)+\left(ca^2+abc\right)+\left(cb^2+abc\right)\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+ca\left(a+b\right)+cb\left(a+b\right)\)
\(=\left(a+b\right)\left(ab+c^2+ca+cb\right)\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
BĐT cần CM tương đương:
\(3-VT\ge1\)
\(\Leftrightarrow\frac{a^2+2bc-a\left(b+c\right)}{a^2+2bc}+...\ge1\) (1)
\(VT\left(1\right)=\frac{\left[a^2+2bc-a\left(b+c\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]}+...\)
\(\ge\frac{\left[a^2+2bc-a\left(b+c\right)+b^2+2ca-b\left(c+a\right)+c^2+2ab-c\left(a+b\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\)
\(=\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\) (2)
Ta cần chứng minh mẫu của (2) \(\le\left(a^2+b^2+c^2\right)^2\)
... Tự biến đổi ra thôi thi ta được 1 biểu thức không âm luôn đúng
=> BĐT trên đúng
=> đpcm
Dấu "=" xảy ra khi: a = b = c
Bài 1 bạn viết rõ yêu cầu của đề ra nhé , mình làm bài 2.
\(a.\left(a-b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow2a^2+2b^2-a^2+2ab-b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a+b=0\)
\(\Leftrightarrow a=-b\left(đpcm\right)\)
\(b.a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)\(\Leftrightarrow a=b=c\left(đpcm\right)\)
\(c.\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2=3ab+3bc+3ac-2ab-2bc-2ac\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow a=b=c\) ( Kết quả câu b)