K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

A=\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{2014\cdot2015\cdot2016}=\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{2014\cdot2015}-\dfrac{1}{2015\cdot2016}\right)=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2015}\cdot\dfrac{1}{2016}\right)=\dfrac{1}{4}-\dfrac{1}{2\cdot2015\cdot2016}< \dfrac{1}{4}\)

Vậy A<\(\dfrac{1}{4}\)

---bé hơn hoặc bằng tức là chỉ cần xảy ra 1 khả năng cũng thõa mãn nhé---

bài này tương tự bài trênHỏi đáp Toán

\(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{2021\cdot2022\cdot2023}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{2021\cdot2022\cdot2023}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{2021\cdot2022}-\dfrac{1}{2022\cdot2023}\right)\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{4090506}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2045252}{4090506}=\dfrac{1022626}{4090506}=\dfrac{511313}{2045253}\)

2 tháng 8 2023

`1/(1.2.3) + 1/(2.3.4) + ... + 1/(2021 . 2022 .2023)`

`=> 2/(1.2.3) + 2/(2.3.4) + ... + 2/(2021 . 2022. 2023)`

`= 1/(1.2) - 1/(2.3) + 1/(2.3) - 1/(3.4) + ... + 1/(2021.2022) - 1/(2022 . 2023)`

`= 1/2 - 1/4090506`

`=4090506/8181012 - 2/8181012`

`= 4090504/8181012`

23 tháng 8 2023

\(B=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+\dfrac{2}{4.5.6}+\dfrac{2}{5.6.7}+\dfrac{2}{6.7.8}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{6.7}-\dfrac{1}{7.8}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{7.8}\)

\(=\dfrac{1}{2}-\dfrac{1}{56}=\dfrac{27}{56}\)

24 tháng 8 2023

Thanks

21 tháng 11 2017

\(A=1.2.3+2.3.4+3.4.5+....+2014.2015.2016\)

\(4A=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+....+2014.2015.2016.\left(2017-2013\right)\)\(4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+2014.2015.2016.2017-2013.2014.2015.2016\)\(4A=2014.2015.2016.2017\)

\(A=\dfrac{2014.2015.2016.2017}{4}=4215446423280\)

25 tháng 3 2018

\(S=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{99.100.101}\)

\(S=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{99.100}-\dfrac{1}{100.101}\right)\)

\(S=\dfrac{1}{4}-\dfrac{1}{2.100.101}\)

26 tháng 3 2018

Thanks ạvui

27 tháng 12 2018

Đặt A=\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)

=>2A=\(\dfrac{2}{1.2.3}\)+\(\dfrac{2}{2.3.4}\)+...+\(\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)

=\(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\)\(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)

=\(\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)

=\(\dfrac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}\)

=\(\dfrac{n^2+3n}{2\left(n^2+3n+2\right)}\)

=>A=\(\dfrac{n^2+3n}{4n^2+12n+8}\)

23 tháng 7 2017

a, A= \(5\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)

\(A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=5\left(1-\dfrac{1}{100}\right)\)

\(A=5.\dfrac{99}{100}=\dfrac{99}{20}.\)

b, \(C=1.2.3+2.3.4+...+8.9.10\)

\(4C=1.2.3.4+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)\(4C=8.9.10.11\)

\(C=\dfrac{8.9.10.11}{4}=1980.\)

c, https://hoc24.vn/hoi-dap/question/384591.html

Câu này bạn vào đây mình đã giải câu tương tự nhé.

23 tháng 7 2017

\(1)A=\dfrac{5}{1.2}+\dfrac{5}{2.3}+...+\dfrac{5}{99.100}\)

\(\Leftrightarrow A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(\Leftrightarrow A=5\left(1-\dfrac{1}{100}\right)\)

\(\Leftrightarrow A=5\cdot\dfrac{99}{100}\)

\(\Leftrightarrow A=\dfrac{99}{20}\)

Ta có: \(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{199\cdot200}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{199}-\dfrac{1}{200}\)

\(=\dfrac{1}{2}-\dfrac{1}{200}\)

\(=\dfrac{100-1}{200}=\dfrac{99}{200}< \dfrac{100}{200}=\dfrac{1}{2}\)(đpcm)

Ta có: \(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{199\cdot200}\)

          \(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\cdot\cdot\cdot+\dfrac{1}{199}-\dfrac{1}{200}\)

          \(=\dfrac{1}{2}-\dfrac{1}{200}< \dfrac{1}{2}\)  (Đpcm)

9 tháng 7 2017

3/ \(2\left(x-3\right)-3\left(1-2x\right)=4+4\left(1-x\right)\)

\(\Leftrightarrow2x-6-3+6x=4+4-4x\)

\(\Leftrightarrow8x-9=8-4x\)

\(\Leftrightarrow8x+4x=8+9\)

\(\Leftrightarrow12x=17\)

\(\Leftrightarrow x=\dfrac{17}{12}\)

Vậy \(x=\dfrac{17}{12}\)

4/ \(\dfrac{x-2}{2}-\dfrac{1+x}{3}=\dfrac{4-3x}{4}-1\)

\(\Leftrightarrow6\left(x-2\right)-4\left(1+x\right)=3\left(4-3x\right)-12\)

\(\Leftrightarrow6x-12-4-4x=12-9x-12\)

\(\Leftrightarrow6x-4-4x=12-9x\)

\(\Leftrightarrow2x-4=12-9x\)

\(\Leftrightarrow2x+9x=12+4\)

\(\Leftrightarrow11x=16\)

\(\Leftrightarrow x=\dfrac{16}{11}\)

Vậy \(x=\dfrac{16}{11}\)