K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(P=\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{\sqrt{x}-1}{\sqrt{x}-x}+\dfrac{\sqrt{x}+3}{x+5\sqrt{x}+6}\)

\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

a: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)-\left(2\sqrt{x}+1\right)+1\)

\(=x+\sqrt{x}-2\sqrt{x}-1+1\)

\(=x-\sqrt{x}\)

b: Ta có: \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}+\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)

\(=\dfrac{x-4+5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

12 tháng 8 2021

em cảm ơn ạ

 

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Lời giải:
\(A=\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}+3)(\sqrt{x}-2)}-\frac{5}{(\sqrt{x}+3)(\sqrt{x}-2)}-\frac{\sqrt{x}+3}{(\sqrt{x}-2)(\sqrt{x}+3)}\)

\(=\frac{x-4-5-\sqrt{x}-3}{(\sqrt{x}-2)(\sqrt{x}+3)}=\frac{x-\sqrt{x}-12}{(\sqrt{x}-2)(\sqrt{x}+3)}=\frac{(\sqrt{x}+3)(\sqrt{x}-4)}{(\sqrt{x}-2)(\sqrt{x}+3)}=\frac{\sqrt{x}-4}{\sqrt{x}-2}\)

7 tháng 5 2022

mik cần gấp ạ^^

 

14 tháng 10 2021

a) \(A=\dfrac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{x-\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\)

b) \(x=6+4\sqrt{2}\Leftrightarrow\sqrt{x}=\sqrt{6+4\sqrt{2}}\)

\(=\sqrt{\left(2+\sqrt{2}\right)^2}=2+\sqrt{2}\)

\(A=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}=\dfrac{2+\sqrt{2}-4}{2+\sqrt{2}-2}=\dfrac{-2+\sqrt{2}}{\sqrt{2}}-\sqrt{2}+1\)

14 tháng 10 2021

\(a,A=\dfrac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\left(x\ge0;x\ne4\right)\\ A=\dfrac{x-\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\\ b,x=6+4\sqrt{2}=\left(2+\sqrt{2}\right)^2\Leftrightarrow\sqrt{x}=2+\sqrt{2}\\ \Leftrightarrow A=\dfrac{\sqrt{2}+2-4}{\sqrt{2}+2-2}=\dfrac{\sqrt{2}-2}{\sqrt{2}}=1-\sqrt{2}\)

18 tháng 9 2023

\(a,B=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{x+\sqrt{x}-6}\left(x>0;x\ne6\right)\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{9\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{x+3\sqrt{x}+\sqrt{x}+3+2\sqrt{x}-4-9\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\\)

\(=\dfrac{x-\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)

`b,` Tớ tính mãi ko ra, xl cậu nha=')

 

 

 

19 tháng 9 2023

b) Xét hiệu:

\(\dfrac{\sqrt{x}-1}{\sqrt{x}+3}-3\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}-\dfrac{3\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\)

\(=\dfrac{\sqrt{x}-1-3\sqrt{x}-9}{\sqrt{x}+3}\)

\(=\dfrac{-2\sqrt{x}-10}{\sqrt{x}+3}\)

\(=\dfrac{-2\left(\sqrt{x}+5\right)}{\sqrt{x}+3}\)

Mà: \(x>0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}+5\ge5>0\\\sqrt{x}+3\ge3>0\end{matrix}\right.\)

\(\Rightarrow\dfrac{\sqrt{x}+5}{\sqrt{x}+3}>0\) 

\(\Rightarrow\dfrac{-2\left(\sqrt{x}+5\right)}{\sqrt{x}+3}< 0\)

Vậy: \(\dfrac{\sqrt{x}-1}{\sqrt{x}+3}< 3\forall x>0\)

(giúp cậu nó nha) 

a) Ta có: \(\dfrac{6}{\sqrt{5}+1}+\sqrt{\dfrac{2}{3-\sqrt{5}}}-\dfrac{10}{\sqrt{5}}\)

\(=\dfrac{6\left(\sqrt{5}-1\right)}{4}+\sqrt{\dfrac{2\left(3+\sqrt{5}\right)}{4}}-2\sqrt{5}\)

\(=\dfrac{3}{2}\left(\sqrt{5}-1\right)+\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-2\sqrt{5}\)

\(=\dfrac{3}{2}\sqrt{5}-\dfrac{3}{2}-2\sqrt{5}+\dfrac{\sqrt{5}+1}{2}\)

\(=-\dfrac{1}{2}\sqrt{5}-\dfrac{3}{2}+\dfrac{1}{2}\sqrt{5}+\dfrac{1}{2}\)

=-1

 

Bài 1: 

a) Thay \(x=\dfrac{1}{4}\)vào B, ta được:

\(B=1:\left(\dfrac{1}{4}\cdot\dfrac{1}{2}+27\right)=1:\left(27+\dfrac{1}{8}\right)=\dfrac{8}{217}\)

b) Ta có: \(A=\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{x-9+\sqrt{x}+3-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}-6-x+2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\)

c) Để \(A>\dfrac{1}{2}\) thì \(A-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)

\(\Leftrightarrow3-\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}< 3\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne4\end{matrix}\right.\)

19 tháng 5 2021

undefined

19 tháng 5 2021

chữ xấu quá

16 tháng 5 2021

`A=(2\sqrtx-9)(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)(3-sqrtx)(x>=0,x ne 4, x ne 9)`

`=(2\sqrtx-9)(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)(sqrtx-3)`

`=(2sqrtx-9-x+9+2x-3sqrtx-2)/(x-5sqrtx+6)`
`=(x-sqrtx-2)/(x-5sqrtx+6)`
`=((\sqrtx+1)(sqrtx-2))/((sqrtx-2)(sqrtx-3))`
`=(sqrtx+1)/(sqrtx-3)`

16 tháng 5 2021

`A=(2\sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)(x>=0,x ne 4, x ne 9)`

`=(2\sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)/(sqrtx-3)`

`=(2sqrtx-9-x+9+2x-3sqrtx-2)/(x-5sqrtx+6)`
`=(x-sqrtx-2)/(x-5sqrtx+6)`
`=((\sqrtx+1)(sqrtx-2))/((sqrtx-2)(sqrtx-3))`
`=(sqrtx+1)/(sqrtx-3)`