Chứng Minh Rằng A=\(\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+\dfrac{1}{1+3+5+7}+...+\dfrac{1}{1+3+5+...+2017}\)\(< \dfrac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+...+\dfrac{1}{1+3+5+...+2017}\)
\(\Rightarrow A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{1+3+...+2017}\)
\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2017^2}\)
Ta thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{4}\)
\(\dfrac{1}{3^2}< \dfrac{1}{3.2}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
.................
\(\dfrac{1}{2017^2}< \dfrac{1}{2016.2017}\)
\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2016.2017}\)
\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2016}-\dfrac{1}{2017}\)
\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{2017}\)
\(\Rightarrow A< \dfrac{3}{4}-\dfrac{1}{2017}\)
\(\Rightarrow A< \dfrac{3}{4}\)
Vậy \(A< \dfrac{3}{4}\).
Có \(\dfrac{1}{1+3}\) + \(\dfrac{1}{1+3+5}\) +...+ \(\dfrac{1}{1+3+...+2017}\)
= \(\dfrac{1}{2^2 }\)+\(\dfrac{1}{3^2}\) + ... +\(\dfrac{1}{2017^2}\)
Lại có :
\(\dfrac{1}{2^2}\) = \(\dfrac{1}{4} \)
\(\dfrac{1}{3^2}\) <\(\dfrac{1}{2.3}\)
...
\(\dfrac{1}{2017^2}\) <\(\dfrac{1}{2016.2017}\)
\(\Rightarrow \) A< \(\dfrac{1}{4} \) +\(\dfrac{1}{2.3}\)+... +\(\dfrac{1}{2016.2017}\)
A<\(\dfrac{1}{4} \)+\(\dfrac{1}{2}\)- \(\dfrac{1}{3}\) +...+\(\dfrac{1}{2016}- \dfrac{1}{2017}\)
A< \(\dfrac{1}{4} \)+\(\dfrac{1}{2}\) -\(\dfrac{1}{2017}\)
A<\(\dfrac{3}{4}\) -\(\dfrac{1}{2017}\)
\(\Rightarrow\)A<\(\dfrac{3}{4}\) (đpcm)
chúc bạn học tốt !!!
\(\dfrac{1}{3^2}>\dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)
\(\dfrac{1}{4^2}>\dfrac{1}{4\cdot5}=\dfrac{1}{4}-\dfrac{1}{5}\)
...
\(\dfrac{1}{100^2}>\dfrac{1}{100}-\dfrac{1}{101}\)
Do đó: \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}>\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}>\dfrac{90.9}{303}=\dfrac{3}{10}\)(1)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3}-\dfrac{1}{4}\)
...
\(\dfrac{1}{100^2}< \dfrac{1}{99}-\dfrac{1}{100}\)
Do đó: \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=>\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}< \dfrac{50}{100}=\dfrac{1}{2}\)(2)
Từ (1),(2) suy ra \(\dfrac{3}{10}< \dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)
\(A=\dfrac{\left(3+\dfrac{2}{15}+\dfrac{1}{5}\right):\dfrac{5}{2}}{\left(5+\dfrac{3}{7}-2-\dfrac{1}{4}\right):\left(4+\dfrac{43}{56}\right)}\)
\(=\dfrac{\dfrac{10}{3}\cdot\dfrac{2}{5}}{\dfrac{89}{28}:\dfrac{267}{56}}=\dfrac{4}{3}:\dfrac{2}{3}=2\)
\(B=\dfrac{\dfrac{6}{5}:\left(\dfrac{6}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{8}{25}+\dfrac{2}{25}}=\dfrac{\dfrac{6}{5}:\dfrac{3}{2}}{\dfrac{2}{5}}=2\)
Do đó: A=B
1/4^2 + 1/5^2 +... + 1/100^2 < 1/3.4 + 1/4.5 +...+ 1/99.100
A=1/3 - 1/4 + 1/4 - 1/5 +...+ 1/99 - 1/100
=1/3 - 1/100 < 1/3
Bài 1:
Ta có:
\(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\left(1\right)\)
Mà \(225\) lẻ nên \(\left\{{}\begin{matrix}100a+3b+1\\2^a+10a+b\end{matrix}\right.\) cùng lẻ \(\left(2\right)\)
\(*)\) Với \(a=0\) ta có:
Từ \(\left(1\right)\Leftrightarrow\left(100.0+3b+1\right)\left(2^a+10.0+b\right)=225\)
\(\Leftrightarrow\left(3b+1\right)\left(1+b\right)=225=3^2.5^2\)
Do \(3b+1\div3\) dư \(1\) và \(3b+1>1+b\)
Nên \(\left(3b+1\right)\left(1+b\right)=25.9\) \(\Rightarrow\left\{{}\begin{matrix}3b+1=25\\1+b=9\end{matrix}\right.\) \(\Leftrightarrow b=8\)
\(*)\) Với \(a\ne0\left(a\in N\right)\) ta có:
Khi đó \(100a\) chẵn, từ \(\left(2\right)\Rightarrow3b+1\) lẻ \(\Rightarrow b\) chẵn
\(\Rightarrow2^a+10a+b\) chẵn, trái với \(\left(2\right)\) nên \(b\in\varnothing\)
Vậy \(\left\{{}\begin{matrix}a=0\\b=8\end{matrix}\right.\)
Bài 2:
Ta có:
\(A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+...+\dfrac{1}{1+3+...+2017}\)
\(=\dfrac{1}{\dfrac{\left(1+3\right).2}{2}}+\dfrac{1}{\dfrac{\left(1+5\right).3}{2}}+...+\dfrac{1}{\dfrac{\left(1+2017\right).1009}{2}}\)
\(=\dfrac{2}{2.4}+\dfrac{2}{3.6}+\dfrac{2}{4.8}+...+\dfrac{2}{1009.2018}\)
\(=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{1009.1009}\)
\(\Rightarrow A< \dfrac{1}{2.2}+\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{1008.1009}\right)\)
\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1008}-\dfrac{1}{1009}\right)\)
\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{1009}\right)\)
\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4}\) (Đpcm)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{1009^2}\)
Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{4};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{1009^2}< \dfrac{1}{1008.1009}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{1009^2}< \dfrac{1}{4}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{1008.1009}\)\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1008}-\dfrac{1}{1009}\)
\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{1009}\)
\(\Rightarrow A< \dfrac{3}{4}-\dfrac{1}{1009}\)
\(\Rightarrow A< \dfrac{3}{4}\left(đpcm\right)\)