K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}=90^0\)

Do đó: BEDC là tứ giác nội tiếp

Tâm là trung điểm của BC

Bán kính là \(\dfrac{BC}{2}=\dfrac{a}{2}\)

15 tháng 11 2023

a: Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

=>B,E,D,C cùng thuộc 1 đường tròn

b: Vì \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên B,E,D,C cùng thuộc đường tròn đường kính BC

tâm là trung điểm I của BC

bán kính là BC/2

c: Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC(1)

ΔABC cân tại A

mà AI là đường trung tuyến

nên AI\(\perp\)BC(2)

Từ (1),(2) suy ra A,H,I thẳng hàng

ΔABC đều

mà BD,CE là các đường cao

nên BD,CE là các đường trung tuyến

=>D,E lần lượt là trung điểm của AC,AB

Xét ΔABC có

BD,CE là các đường trung tuyến

BD cắt CE tại H

Do đó; H là trọng tâm của ΔABC

mà I là trung điểm của BC

nên \(AH=\dfrac{2}{3}AI\) và \(IH=\dfrac{1}{3}IA\)

ΔAIB vuông tại I

=>\(AB^2=AI^2+IB^2\)

=>\(AI^2=2^2-1^2=3\)

=>\(AI=\sqrt{3}\left(cm\right)\)

\(HI=\dfrac{1}{3}HA=\dfrac{1}{3}\sqrt{3}< \dfrac{1}{3}\cdot3=IB=R\)

=>H nằm trong (I)

\(IA=\sqrt{3}>1=IB=R\)

=>A nằm ngoài (I)

 

15 tháng 11 2023

Cảm ơn . Nhưng mà cho mik hỏi câu d 😅 

10 tháng 11 2019

- có \(\Delta BDC\)vuông tại D

nên D thuộc đường tròn đường kính BC ( 1)

có \(\Delta BEC\)vuông tại E

nên E thuộc đường tròn đường kính BC (2)

từ (1) và (2) suy ra đpcm

- gọi O là trung điểm của BC

có AO vuông góc với BC

dễ thấy OE > OH

nên H nằm trong đường tròn đường kính BC

dễ cm OA > OB

ên A nằm ngoài đường tròn đường kính BC

19 tháng 10 2023

loading...  loading...  loading...  

a: góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

O là trung điểm của AH

b:

XetΔACB có

BD,CE là đường cao

BD căt CE tại H

=>H là trực tâm

=>AH vuông góc BC

=>K là trung điểm của CB

góc ODK=góc ODH+góc KDH

=góc BHK+góc KBH=90 độ

=>KD là tiếp tuyến của (O)

17 tháng 8 2021

sao đéo có thg lồn nào giải vậy

 

19 tháng 12 2023

P/S: Tính chất đường cao và đồng quy trong tam giác đã học từ năm lớp 7 rồi nha bạn

a: Ta có: ΔBEC vuông tại E

=>ΔBEC nội tiếp đường tròn đường kính BC(1)

Ta có: ΔBDC vuông tại D

=>ΔBDC nội tiếp đường tròn đường kính BC(2)

Từ (1) và (2) suy ra B,E,D,C cùng nằm trên đường tròn đường kính BC

Tâm O là trung điểm của BC

b: Xét ΔABC có 

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại M

Ta có: AH\(\perp\)BC

EK\(\perp\)BC

Do đó: AH//EK

c: Ta có: ΔAHD vuông tại D

mà DI là đường trung tuyến

nên ID=IH

=>ΔIDH cân tại I

=>\(\widehat{IHD}=\widehat{IDH}\)

mà \(\widehat{IHD}=\widehat{BHM}\)(hai góc đối đỉnh)

và \(\widehat{BHM}=\widehat{BCD}\left(=90^0-\widehat{DBC}\right)\)

nên \(\widehat{IDH}=\widehat{BCD}\)

Ta có: OD=OB

=>ΔODB cân tại O

=>\(\widehat{ODB}=\widehat{OBD}=\widehat{CBD}\)

Ta có: \(\widehat{IDO}=\widehat{IDH}+\widehat{ODB}\)

\(=\widehat{DBC}+\widehat{DCB}\)

=90 độ

=>ID là tiếp tuyến của (O)

a: Xét (O) có 

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét (O) có 

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét ΔABC có

BD là đường cao

CE là đường cao

BD cắt CE tại H

Do đó: AH⊥BC

a:

góc BDC=góc BEC=1/2*sđ cung BC=90 độ

=>CD vuông góc AB và BE vuông góc AC

Xét ΔABC có

CD,BE là đường cao

CD cắt BE tại H

=>H là trực tâm

=>AH vuông góc BC

b: góc AEH+góc ADH=180 độ

=>AEHD nội tiếp đường tròn đường kính AH

=>I là trung điểm của AH

c: góc BDC=góc BEC=90 độ

=>BDEC nội tiếp đường tròn đường kính BC

=>O là trung điểm của BC

d: ID=IE

OD=OE

=>OI là trung trực của DE

=>OI vuông góc DE