Cho tam giác ABC đều có cạnh = a, các đường cao BD và CE cắt nhau tại H
a) Chứng minh: 4 điểm B,E,D,C thuộc cùng 1 đường tròn. Hãy xác định tâm và bán kính của đường tròn ấy
b) Chứng minh: Điểm H nắm trong đường tròn và điểm A nằm ngoài đường tròn đi qua 4 điểm B,E,D,C
a: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
Do đó: BEDC là tứ giác nội tiếp
Tâm là trung điểm của BC
Bán kính là \(\dfrac{BC}{2}=\dfrac{a}{2}\)