Giải phương trình : 2x\(^2\)+ \(\sqrt{x^3+1}\)=\(-4\)
Help me, please !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\in R\)
\(3x^2-5x+6=2x\cdot\sqrt{x^2-x+2}\)
=>\(3x^2-6x+x-2+8=2\cdot\sqrt{x^4-x^3+2x^2}\)
=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\left(\sqrt{x^4-x^3+2x^2}-4\right)\)
\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-x^3+2x^2-16}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-2x^3+x^3-2x^2+4x^2-8x+8x-16}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left(3x+1\right)=\dfrac{2\left(x-2\right)\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left[\left(3x+1\right)-\dfrac{2\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\right]=0\)
=>x-2=0
=>x=2(nhận)
\(3x^2-5x+6=2x\sqrt{x^2-x+2}\)
\(\Leftrightarrow\left[x^2-2x\sqrt{x^2-x+2}+\left(x^2-x+2\right)\right]+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x^2-x+2}\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{x^2-x+2}\\x-2=0\end{matrix}\right.\Leftrightarrow x=2\)
Thử lại ta thấy nghiệm \(x=2\) thỏa phương trình ban đầu.
ĐKXĐ: \(x\ge-\dfrac{4}{5}\)
Đặt \(\sqrt{5x+4}=t\ge0\Rightarrow x=\dfrac{t^2-4}{5}\)
Pt trở thành:
\(\dfrac{t^2-4}{5}-t=2\)
\(\Leftrightarrow t^2-5t-14=0\Rightarrow\left[{}\begin{matrix}t=7\\t=-2< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{5x+4}=7\)
\(\Rightarrow5x+4=49\)
\(\Rightarrow x=9\)
Lời giải
$y'=3x^2+1>0$ với mọi $x\in\mathbb{R}$ nên hàm $y=x^3+x$ đồng biến trên $\mathbb{R}$
PT $\Leftrightarrow x^3+x=\sqrt[3]{2x+1}+2x+1$
Đặt $\sqrt[3]{2x+1}=t$ thì:
$x^3+x=t^3+t$
Vì hàm $y=x^3+x$ đồng biến nên $x^3+x=t^3+t\Leftrightarrow x=t$
$\Leftrightarrow x=\sqrt[3]{2x+1}$
$\Leftrightarrow x^3=2x+1$
Giải pt này dễ dàng có $x=-1; \frac{1\pm \sqrt{5}}{2}$
\(Pt\left(1\right)\Leftrightarrow2x\left(x-y\right)+x-y=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-y\right)=0\)
\(x^2-2x+3=t\left(t\ge0\right)\)
\(pt\Leftrightarrow\frac{1}{t-1}+\frac{1}{t}=\frac{9}{2\left(t+1\right)}\)
\(\Leftrightarrow\frac{2t\left(t+1\right)}{2t\left(t^2-1\right)}+\frac{2\left(t^2-1\right)}{2t\left(t^2-1\right)}-\frac{9t\left(t-1\right)}{2t\left(t^2-1\right)}=0\)
\(\Leftrightarrow-5t^2+11t-2=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2\end{cases}}\)
bài này dùng bdt nhé bạn
ta có \(\sqrt{\left(y-1\right)\cdot1}\le\frac{y-1+1}{2}=\frac{y}{2}\) ( bdt cô-si)
==> \(x\sqrt{y-1}\le\frac{xy}{2}\)
tương tự \(2y\sqrt{x-1}\le xy\)
do đó \(x\sqrt{y-1}+2y\sqrt{x-1}\le\frac{3}{2}xy\)
dấu ''='' xảy ra khi x=y=2
Đk :\(x\ge1;y\ge1\)
đề bài <=> \(\frac{xy}{2}-x\sqrt{y-1}+xy+2y\sqrt{x-1}=0\)
<=> \(\frac{x}{2}\left(y-2\sqrt{y-1}\right)+y\left(x-2\sqrt{x-1}\right)=0\)
<=> \(\frac{x}{2}\left[\left(y-1\right)-2\sqrt{y-1}+1\right]+y\left[\left(x-1\right)-2\sqrt{x-1}+1\right]=0\)
<=>\(\frac{x}{2}\left(\sqrt{y-1}-1\right)^2+y\left(\sqrt{x-1}-1\right)^2=0\)*
vì theo đk ta sẽ có để pt xảy ra thì :
\(\left(\sqrt{y-1}-1\right)^2=0\)và \(\left(\sqrt{x-1}-1\right)^2=0\)<=> x=2 và y=2
Mình giải nv đó, bạn xem và trình bày lại dùm mình nhé
Đặt \(\sqrt{x+1}=a,\sqrt{x^2-x+1}=b\left(a\ge0,b\ge\dfrac{1}{2}\right)\)
\(Pt\Leftrightarrow2a^2+2b^2-5ab=0\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
đây nà bạn