K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

A B C D I E 1 2 2 1 70 o

\(\Delta ABC\) có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (định lí)

\(\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-70^o\)

\(\Rightarrow\) \(\widehat{B}+\widehat{C}=110^o\).

Do \(\widehat{B_1}=\widehat{B_2},\widehat{C_1}=\widehat{C_2}\) nên \(\widehat{B_1}+\widehat{C_1}=\dfrac{\widehat{B}+\widehat{C}}{2}=\dfrac{110^o}{2}=55^o\)

Vậy: \(\widehat{BIC}=180^o-\left(\widehat{B_1}+\widehat{C_1}\right)=180^o-55^o=125^o.\)

3 tháng 5 2019

BIC = 130o

3 tháng 5 2019

\(\widehat{ABC}+\widehat{ACB}=180-80=100\)

\(=>\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{100}{2}=50\)

\(=>\widehat{BIC}=180-\left(\widehat{IBC}+\widehat{ICB}\right)=180-50=130\)

okey nhé bợn

6 tháng 11 2018

Trong ∆ABC, ta có:

∠A + ∠B + ∠C = 180o (tổng ba góc trong tam giác)

Suy ra: ∠B + ∠C = 180o - ∠A = 180o - 70o = 110o

Ta có:

∠(B1 ) = 1/2 ∠B (vì BD là tia phân giác)

∠(C1 ) = 1/2 ∠C (vì CE là tia phân giác)

Trong ∆BIC, ta có:

∠(BIC) + ∠(B1 ) + ∠(C1 ) = 180o (tổng 3 góc trong tam giác)

Suy ra: ∠(BIC) = 180o - (∠(B1 ) + ∠(C1)) = 180o - 1/2 (∠B + ∠C)

= 180o - 1/2 .110o = 125o

12 tháng 4 2017

5x2y(-3xy3z2)

=(-3.5)(x2.x)(y.y3)z2

= -15.x3.y4.z2

12 tháng 4 2017

@ngoduongman : nhầm địa chỉ =))

3 tháng 10 2018

Trong tam giác ABC có:

∠A + ∠(ABC) + ∠(ACB) = 180o ⇒ ∠(ABC) + ∠(ACB) = 180o - 80o = 100o

Mà BI và CI lâ các tia phân giác nên

∠(ABC) + ∠(ACB) = 2.∠(IBC) + 2.∠(ICB) = 2 (∠(IBC) + ∠(ICB) )

Suy ra ∠(IBC) + ∠(ICB) = 50o

Mà ∠(IBC) + ∠(ICB) + ∠(BIC) = 180o ⇒ ∠(BIC) = 130o. Chọn C

17 tháng 9 2023

a) Tam giác ABC cân tại A nên: \(\widehat {ABC} = \widehat {ACB} = 70^\circ \).

Tổng ba góc trong một tam giác bằng 180° nên: \(\widehat {BAC} = 180^\circ  - 70^\circ  - 70^\circ  = 40^\circ \).

b) Xét tam giác vuông ADB và tam giác vuông AEC có:

     AB = AC (tam giác ABC cân);

     \(\widehat A\) chung.

Vậy \(\Delta ADB = \Delta AEC\)(cạnh huyền – góc nhọn). Suy ra: BD = CE ( 2 cạnh tương ứng).

c) Trong tam giác ABC có H là giao điểm của hai đường cao BD và CE nên H là trực tâm trong tam giác ABC hay AF vuông góc với BC.

Xét hai tam giác vuông AFB và AFC có:

     AB = AC (tam giác ABC cân);

     AF chung.

Vậy \(\Delta AFB = \Delta AFC\)(cạnh huyền – cạnh góc vuông). Suy ra: \(\widehat {FAB} = \widehat {FAC}\) ( 2 góc tương ứng) hay \(\widehat {BAH} = \widehat {CAH}\).

Vậy tia AH là tia phân giác của góc BAC.

8 tháng 4 2019

                                                                                  Dân ta phải biết sử ta                                                                                                                                                                                 Cái gì mình không biết mình tra google.

15 tháng 4 2019

t ko bt lm r :))