Cho tam giác ABC có \(\widehat{A}=70^0\), các đường phân giác BD, CE cắt nhau ở I. Tính \(\widehat{BIC}\) ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{ABC}+\widehat{ACB}=180-80=100\)
\(=>\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{100}{2}=50\)
\(=>\widehat{BIC}=180-\left(\widehat{IBC}+\widehat{ICB}\right)=180-50=130\)
okey nhé bợn
Trong ∆ABC, ta có:
∠A + ∠B + ∠C = 180o (tổng ba góc trong tam giác)
Suy ra: ∠B + ∠C = 180o - ∠A = 180o - 70o = 110o
Ta có:
∠(B1 ) = 1/2 ∠B (vì BD là tia phân giác)
∠(C1 ) = 1/2 ∠C (vì CE là tia phân giác)
Trong ∆BIC, ta có:
∠(BIC) + ∠(B1 ) + ∠(C1 ) = 180o (tổng 3 góc trong tam giác)
Suy ra: ∠(BIC) = 180o - (∠(B1 ) + ∠(C1)) = 180o - 1/2 (∠B + ∠C)
= 180o - 1/2 .110o = 125o
Trong tam giác ABC có:
∠A + ∠(ABC) + ∠(ACB) = 180o ⇒ ∠(ABC) + ∠(ACB) = 180o - 80o = 100o
Mà BI và CI lâ các tia phân giác nên
∠(ABC) + ∠(ACB) = 2.∠(IBC) + 2.∠(ICB) = 2 (∠(IBC) + ∠(ICB) )
Suy ra ∠(IBC) + ∠(ICB) = 50o
Mà ∠(IBC) + ∠(ICB) + ∠(BIC) = 180o ⇒ ∠(BIC) = 130o. Chọn C
a) Tam giác ABC cân tại A nên: \(\widehat {ABC} = \widehat {ACB} = 70^\circ \).
Tổng ba góc trong một tam giác bằng 180° nên: \(\widehat {BAC} = 180^\circ - 70^\circ - 70^\circ = 40^\circ \).
b) Xét tam giác vuông ADB và tam giác vuông AEC có:
AB = AC (tam giác ABC cân);
\(\widehat A\) chung.
Vậy \(\Delta ADB = \Delta AEC\)(cạnh huyền – góc nhọn). Suy ra: BD = CE ( 2 cạnh tương ứng).
c) Trong tam giác ABC có H là giao điểm của hai đường cao BD và CE nên H là trực tâm trong tam giác ABC hay AF vuông góc với BC.
Xét hai tam giác vuông AFB và AFC có:
AB = AC (tam giác ABC cân);
AF chung.
Vậy \(\Delta AFB = \Delta AFC\)(cạnh huyền – cạnh góc vuông). Suy ra: \(\widehat {FAB} = \widehat {FAC}\) ( 2 góc tương ứng) hay \(\widehat {BAH} = \widehat {CAH}\).
Vậy tia AH là tia phân giác của góc BAC.
Dân ta phải biết sử ta Cái gì mình không biết mình tra google.
\(\Delta ABC\) có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (định lí)
\(\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-70^o\)
\(\Rightarrow\) \(\widehat{B}+\widehat{C}=110^o\).
Do \(\widehat{B_1}=\widehat{B_2},\widehat{C_1}=\widehat{C_2}\) nên \(\widehat{B_1}+\widehat{C_1}=\dfrac{\widehat{B}+\widehat{C}}{2}=\dfrac{110^o}{2}=55^o\)
Vậy: \(\widehat{BIC}=180^o-\left(\widehat{B_1}+\widehat{C_1}\right)=180^o-55^o=125^o.\)