Thu gọn các đa thức sau :
a) \(2x^2yz+4xy^2z-5x^2yz+xy^2z-xyz\)
b) \(x^3-5xy+3x^3+xy-x^2+\dfrac{1}{2}xy-x^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{5}xy\left(x-y\right)+2\left(y^2x+xy^2\right)\)
\(=\frac{1}{5}x^2y-\frac{1}{5}xy^2+2y^2x+2xy^2\)
\(=\frac{1}{5}x^2y-xy^2\left(\frac{1}{5}-2-2\right)\)
\(=\frac{1}{5}x^2y-\frac{-19}{5}xy^2\)
+) BẬC CỦA ĐƠN THỨC: 3
B) \(3x^2yz-4xy^2z^2-\left(xyz+x^2y^2z^2\right)\left(a+1\right)\)
\(3x^2yz-4xy^2z^2-\left(a+1\right)xyz-\left(a+1\right)x^2y^2z^2\)
+) BẬC CỦA ĐƠN THỨC: 6
CHÚC BN HỌC TỐT!!!!
Nhóm 1:-5x\(^2\)yz;\(\dfrac{2}{3}\)x\(^2\)yz
Nhóm 2:3xy\(^2\)z;-\(\dfrac{2}{3}\)xy\(^2\)z
Nhóm 3:10x\(^2\)y\(^2\)z;\(\dfrac{5}{7}\)x\(^2\)y\(^2\)z
a, \(2x^2yz+4xy^2z-10x^2yz+xy^2z-2xyz\)
\(=2x^2y+\left(4xy^2z+xy^2z\right)-10x^2yz-2xyz\)
\(=2x^2y+5xy^2z-10x^2yz-2xyz\)
b, \(x^3-5xy+3x^3+xy-x^2+\frac{1}{2}-x^2\)
\(=\left(x^3+3x^3\right)+\left(-5xy+xy\right)+\left(-x^2-x^2\right)+\frac{1}{2}\)
\(=4x^3-4xy-2x^2+\frac{1}{2}\)
c, \(3x^2y^2z^2+x^2y^2z^2=4x^2y^2z^2\)
Bài 1 :
a) 2x2yz + 4xy2z - 10x2yz + xy2z - 2xyz
= ( 2 - 10 )x2yz + ( 4 + 1 )xy2z - 2xyz
= -8x2yz + 5xy2z - 2xyz
b) 3x2y2z2 + x2y2z2 = ( 3 + 1 )x2y2z2 = 4x2y2z2
Bài 2.
a) 15x4 + 7x4 + ( -20x )x2 = ( 15 + 7 )x4 - 20xx2 = 22x4 - 20x3
Thay x = -1 vào đa thức ta có :
22 . ( -1 )4 - 20 . ( -1 )3
= 22 . 1 - 20 . ( -1 )
= 22 - ( -20 )
= 22 + 20
= 42
Vậy giá trị của đa thức = 42 khi x = -1
b) 23x3y3 + 17x3y3 + ( -50x3 )y3 = 23x3y3 + 17x3y3 - 50x3y3 = ( 23 + 17 - 50)x3y3 = -10x3y3
Thay x = 1 ; y = -1 vào đơn thức ta có :
-10 . 13 . ( -1 )3
= -10 . 1 . ( -1 )
= 10
a) \(-\dfrac{2}{3}xy^2z.\left(-3x^2y\right)^2\)
= \(-\dfrac{2}{3}xy^2z.9x^4y^2\)
= \(-6x^5y^4z\)
b) \(x^2yz.\left(2xy\right)^2z\)
= \(x^2yz.4x^2y^2z\)
= \(4x^4y^3z^2\)
a: A=-2xy+xy+xy^2=-xy+xy^2
Bậc là 3
b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)
Bậc là 4
c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)
Bậc là 5
d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)
bậc là 3
e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)
=-2x^2+2z^4-y^3
Bậc là 4
f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)
Bậc là 4
a, \(3y\left(x^2-xy\right)-7x^2\left(y+xy\right)\)
\(=3x^2y-3xy^2-7x^2y-7x^3y\)
\(=-4x^2y-3xy^2-7x^3y\)
\(=y\left(-4x^2-3xy-7x^3\right)\)
b, \(4x^3yz-4xy^2z^2-\left(xyz+x^2y^2z^2\right)\left(a+1\right)\)
\(=4x^3yz-4xy^2z^2-xyza-x^2y^2z^2a-xyz-x^2y^2z^2\)
\(=xyz\left(4x^2-4yz-a-xyza-1-xyz\right)\)
1.
a)\(\left(\dfrac{1}{2}\cdot\left(-2\right)\cdot\dfrac{-1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot\left(y^2\cdot y^3\right)\cdot z\)
\(\dfrac{1}{3}x^6y^5z\)
Deg=12
a) Các đơn thức đồng dạng trong các đơn thức sau là: \(5x^2yz;-2x^2yz\) ; \(x^2yz\) ; \(0,2x^2yz\)
b) \(M\left(x\right)=3x^2+5x^3-x^2+x-3x-4\)
\(M\left(x\right)=(3x^2-x^2)+5x^3+(x-3x)-4\)
\(M\left(x\right)=2x^2+5x^3-2x-4\)
\(M\left(x\right)=5x^3+2x^2-2x-4\)
c) \(P+Q=\left(x^3x+3\right)+\left(2x^3+3x^2+x-1\right)\)
\(P+Q=x^3x+3+2x^3+3x^2+x-1\)
\(P+Q=\left(x^3+2x^3\right)+\left(x+x\right)+\left(3-1\right)+3x^2\)
\(P+Q=3x^3+2x+2+3x^2\)
a) 2x2yz + 4xy2z - 5x2yz + xy2z - xyz
= (2x2yz-5x2yz)+(4xy2z+xy2z)-xyz
= -3x2yz + 5xy2z - xyz
b) x3-5xy+3x3+xy-x2+\(\dfrac{1}{2}\)xy-x2
= (x3+3x3)+(xy-5xy+\(\dfrac{1}{2}\)xy)-(x2+x2)
= 4x3-\(\dfrac{7}{2}\)xy-2x2