cho x,y>0 và xy=1.CMR:\(\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)
\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Tương tự : \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz}=\sqrt{\frac{3}{yz}}\); \(\frac{\sqrt{1+x^3+z^3}}{xz}\ge\frac{\sqrt{3xz}}{xz}=\sqrt{\frac{3}{xz}}\)
\(\Rightarrow A\ge\sqrt{3}\left(\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}\right)\ge3\sqrt{3}\sqrt{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)
Ta có: \(x^3+y^3\ge xy\left(x+y\right)\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)\)
\(=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)(vì xyz = 1)
\(\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}=\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}=\sqrt{\frac{3}{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}=\sqrt{\frac{3}{zx}}\)
Cộng vế với vế, ta được:
\(BĐT=\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)
\(\ge3\sqrt{3}\sqrt[3]{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
Đặt: \(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\)
Ta có: \(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{xy}{x}+\frac{xy}{y}+\frac{2}{x+y}\left(\text{Do: xy = 1}\right)\)
\(=x+y+\frac{2}{x+y}\)
\(=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}\)
Đặt: \(B=\frac{x+y}{2};C=\frac{x+y}{2}+\frac{2}{x+y}\)
\(\Rightarrow A=B+C\)
Vì x, y > 0, áp dụng BĐT Cô-si, ta có:
\(\Rightarrow B=\frac{x+y}{2}\ge\sqrt{xy}=\sqrt{1}=1\) (1)
Ta có: x, y > 0 => x + y > 0
Áp dụng BĐT \(\frac{a}{b}+\frac{b}{a}\ge2\) với hai số dương x + y và 2
\(\Rightarrow C=\frac{x+y}{2}+\frac{2}{x+y}\ge2\) (2)
\(\text{Từ (1); (2) }\Rightarrow B+C=\frac{x+y}{2}+\frac{2}{x+y}\ge1+2\)
\(\Rightarrow A\ge3\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\ge3\)
=> ĐPCM
1/ Với số dương ta luôn có \(\frac{x}{y}+\frac{y}{x}\ge2\) (Cauchy hoặc quy đồng chuyển vế sẽ chứng minh được dễ dàng). Ta cần chứng minh:
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+2.\frac{x}{y}.\frac{y}{x}+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\) (1)
Đặt \(\frac{x}{y}+\frac{y}{x}=a\ge2\) thì (1) trở thành:
\(a^2+2\ge3a\Leftrightarrow a^2-3a+2\ge0\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\) (2)
Do \(a\ge2\Rightarrow\left\{{}\begin{matrix}a-1>0\\a-2\ge0\end{matrix}\right.\Rightarrow\left(a-1\right)\left(a-2\right)\ge0\)
\(\Rightarrow\left(2\right)\) đúng, vậy BĐT được chứng minh. Dấu "=" xảy ra khi \(x=y\)
2/ \(B=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y\right)+2045\)
\(B=\left(x^2-2x\right)\left(y^2+6y+12\right)+3\left(y^2-6y+12\right)-36+2045\)
\(B=\left(x^2-2x+3\right)\left(y^2+6y+12\right)+2009\)
\(B=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+2009\)
Do \(\left\{{}\begin{matrix}\left(x-1\right)^2+2\ge2\\\left(y+3\right)^2+3\ge3\end{matrix}\right.\)
\(\Rightarrow B\ge2.3+2009=2015\)
\(\Rightarrow B_{min}=2015\) khi \(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
BĐT\(\Leftrightarrow\left(\frac{1}{x-1}\right)^3+\left(\frac{x-1}{y}\right)^3+\left(\frac{1}{y}\right)^3\ge3\left(\frac{1}{x-1}+\frac{x-1}{y}+\frac{1}{y}-2\right)\)
Đặt \(\left(\frac{1}{x-1};\frac{x-1}{y};\frac{1}{y}\right)=\left(a;b;c\right)\)
BĐT cần cm \(\Leftrightarrow a^3+b^3+c^3\ge3\left(a+b+c-2\right)\)
\(\Leftrightarrow\left(a^3+1+1\right)+\left(b^3+1+1\right)+\left(c^3+1+1\right)\ge3\left(a+b+c\right)\)
Đúng theo AM-GM --> đpcm
Áp dung BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)
\(=>x,y,z>0\left(taco\right)\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+xz}\)
\(=>P\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\)
\(=>P\ge\left(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}\right)+\frac{7}{xy+yz+xz}\)
\(\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{7}{xy+yz+zx}\)
\(=\frac{9}{\left(x+y+z\right)^2}+\frac{7}{xy+yz+xz}\ge\frac{9}{\left(x+y+z\right)^2}+\frac{21}{\left(x+y+z\right)^2}\ge30\)
do \(3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2and\left(x+y+z=1\right)\)
dấu = xảy ra khi x=y=z=1/3
zậy...........
xy = 1 => \(\left(x+y\right)^2\ge4xy=4.1=4\Rightarrow x+y\ge2\)
Ta CM BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ( dễ dàng cm đc bằng cách xét hiệu )
\(\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\ge\frac{4}{x+y}+\frac{2}{x+y}=\frac{6}{x+y}\)\(=\frac{6}{2}=3\)
dấu bằng của BĐT xảy ra khi x = y = 1
Lời giải bạn Thắng bị sai.
Ta có \(\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{x+y}{xy}+\frac{2}{x+y}=\left(x+y\right)+\frac{2}{x+y}=\frac{x+y}{2}+\left(\frac{x+y}{2}+\frac{2}{x+y}\right).\)
Theo bất đẳng thức Cô-Si \(\frac{x+y}{2}\ge\frac{2\sqrt{xy}}{2}=1,\) và \(\frac{x+y}{2}+\frac{2}{x+y}\ge2\sqrt{\frac{x+y}{2}\cdot\frac{2}{x+y}}=2.\) Suy ra
\(\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\ge1+2=3.\)