Chứng minh rằng nếu tứ diện ABCD có \(AB\perp CD\) và \(AC\perp BD\) thì \(AD\perp BC\) ?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
30 tháng 6 2017
Vì HG là đường trung bình của tam giác ACD nên HG // CD. Tương tự EF là đường trung bình của tam giác BCD nên EF // CD.
PT
1
CM
16 tháng 8 2019
Vẽ AH ⊥ (BCD) tại H, ta có CD ⊥ AH và vì CD ⊥ AB ta suy ra CD ⊥ BH. Tương tự vì BD ⊥ AC ta suy ra BD ⊥ CH
Vậy H là trực tâm của tam giác BCD tức là DH ⊥ BC
Vì AH ⊥ BC nên ta suy ra BC ⊥ AD
Cách khác: Trước hết ta hãy chứng minh hệ thức:
với bốn điểm A, B, C, D bất kì.
Thực vậy , ta có:
Do đó nếu AB ⊥ CD nghĩa là
Từ hệ thức (4) ta suy ra
,
do đó AD ⊥ BC.
AB ⊥ CD =>
AC ⊥ DB => => => AD ⊥ BC.