K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

Do \(d\perp\left(ABC\right)\) nên \(MN\perp BC\)

\(\left\{{}\begin{matrix}MC\perp\left(BOH\right)\\BN\subset\left(BOH\right)\end{matrix}\right.\) \(\Rightarrow MC\perp BN\)

\(\left\{{}\begin{matrix}MB\perp\left(CHO\right)\\CN\subset\left(CHO\right)\end{matrix}\right.\)\(\Rightarrow MB\perp CN\)

25 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

25 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

25 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Gọi I, J, K lần lượt là các giao điểm của AH và MO; AC và BH; MC và BO

\(MA\perp\left(ABC\right)\Rightarrow MA\perp BJ\)

H là trực tâm của tam giác ABC => \(AC\perp BJ\)

\(\left\{{}\begin{matrix}BJ\perp MA\\BJ\perp AC\end{matrix}\right.\)\(\Rightarrow BJ\perp\left(MAC\right)\)

\(\Rightarrow BJ\perp MC\)

O là trực tâm của tam giác MBC nên \(BO\perp MC\)

Do đó : \(BO\perp\left(BJK\right)\Rightarrow MC\perp\left(BOH\right)\Rightarrow MC\perp OH\) (1)

Chứng minh tương tự : \(MB\perp OH\) (2)

Từ (1) và (2) cho \(OH\perp\left(MBC\right)\)

1/ Cho tam giác ABC vuông tại A và góc C bằng 30 độ . Vẽ trung trực của AC , cắt AC tại H và BC tại D , nối ADa)Chứng minh tam giác ABD đều(sẵn vẽ hình giúp mình nhé)b)Kẻ phân giác của góc B cắt AD tại K và cắt DH kéo dài I. CM: I là tâm đường tròn đi qua ba đỉnh của tam giác ADC c)Vẽ IE vuông góc với DC; IF vuông góc với AB kéo dài. CM:IF=IE=IK2/ Cho tam giác ABC vẽ AH vuông góc với BC. Gọi I và K lần...
Đọc tiếp

1/ Cho tam giác ABC vuông tại A và góc C bằng 30 độ . Vẽ trung trực của AC , cắt AC tại H và BC tại D , nối AD

a)Chứng minh tam giác ABD đều(sẵn vẽ hình giúp mình nhé)

b)Kẻ phân giác của góc B cắt AD tại K và cắt DH kéo dài I. CM: I là tâm đường tròn đi qua ba đỉnh của tam giác ADC 

c)Vẽ IE vuông góc với DC; IF vuông góc với AB kéo dài. CM:IF=IE=IK

2/ Cho tam giác ABC vẽ AH vuông góc với BC. Gọi I và K lần lượt là hình chiếu của H lên AB và AC. Kéo dài HI một đoạn ID=HI và kéo dài HK một đoạn KE=HK. CM:A nằm trên trung trực của DE( vẽ hình giúp mình nhé các bạn )

3/Cho tam giác ABC cân tại A,M và N là hai điểm tương ứng thuộc hai cạnh AB và AC sao cho BM=AN. Gọi O là điểm cách đều ba đỉnh A,B,C .CM: Ocách đều 2 điểm M và N

4/Trên cạnh AB,BC,AC của tam giác đều ABC . Lấy các điểm theo thứ tự M,N,P sao cho AM=BN=CP.Gọi O là giao điểm của 3 đường trung trực của tam giác ABC . CM: O cũng là giao điểm của ba đường trung trực của tam giác MNP

5/Cho tam giác đều ABC . Trên các cạnh BC,CA,AB lần lượt lất các điểm D,E,F sao cho BD=CE=AF.CM:

a)Tam giác AEF đều

b)Các trung trực của ABC và DEF cùng đi qua một điểm

6/Cho tam giác ABC vuông tại A. Tia phân giác BD và CE cắt nhai tại O 

a)Chứng tỏ O cách đều ba cạnh của tam giác 

b)Từ D và E hạ d8oừng vuông góc xuống BC và cắt CB tại H và K . Tính số đo góc HAk

Mong mọi người vẽ hình và giúp mình giải các bài trên nhé nếu có dài quá thì cho mình xin lỗi

0
29 tháng 11 2023

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>CD\(\perp\)DB tại D

=>CD\(\perp\)AB tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE\(\perp\)EC tại E

=>BE\(\perp\)AC tại E

Xét ΔABC có

BE,CD là đường cao

BE cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC