Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi N, P, Q theo thứ tự là trung điểm của các cạnh BC, CC', C'D'. Tìm diện tích thiết diện tạo bởi mặt phẳng (NPQ) cắt hình lập phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Phương pháp
Ta sử dụng công thức diện tích hình chiếu
S
'
=
S
.
cos
α
Với S là diện tích hình H , S’ và là diện tích hình chiếu của H trên mặt phẳng (P), α là góc tạo bởi mặt phẳng chứa hình H và mặt phẳng (P).
Cách giải:
Lại có hình chiếu của EFGH xuống mặt phẳng (ABCD) là hình vuông ABCD cạnh 3
Theo công thức tính diện tích hình chiếu ta có
Dễ thấy (CMN) là (ABC'D')(Vì CM,MN,CN nằm trong mp đó)
thiết diện có S=\(a^2\sqrt{2}\)
Ta xác định thiết diện của hình lập phương cắt bởi các mặt phẳng sau:
- Mặt phẳng (EFB): ta vẽ FG //AB và được thiết diện là hình chữ nhật ABGF, G là trung điểm của CC'.
- (h.2.67) Mặt phẳng (EFC): Nối FC và vẽ EG // FC, ta được thiết diện là hình thang ECFG
- (h.2.68) Mặt phẳng (EFC'): Nối FC' và vẽ EG // FC′. Nối GC' và vẽ FH // GC′. Ta được thiết diện là hình ngũ giác EGC'FH.
- (h.2.69) Mặt phẳng (EFK) với K là trung điểm của đoạn B'C'. Lấy trung điểm E' của đoạn A'B'. Ta có I = EF ∩ E′D. Ta có IK là giao tuyến của hai mặt phẳng (EFK) và (A'B'C'D'). Gọi G = IK ∩ C′D′. Nối F với G, vẽ EH // FG. Nối K với H, vẽ FL // KH và nối L với E. Ta được thiết diện là hình lục giác đều EHKGFL. (G, H, L theo thứ tự là trung điểm của D'C', B'B, AD).