K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2021

giai giúp mình với

a: Để hàm số trên là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m\ge0\\m\ne4\end{matrix}\right.\)

b: Để hàm số đồng biến thì \(\sqrt{m}-2>0\)

hay m>4

NV
8 tháng 7 2021

a.

Hàm số đồng biến trên R khi và chỉ khi:

\(\left\{{}\begin{matrix}7-m\ge0\\\sqrt{7-m}-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le7\\m< 6\end{matrix}\right.\) \(\Leftrightarrow m< 6\)

b. Để hàm nghịch biến trên R

\(\Leftrightarrow m^2+m+1< 0\)

\(\Leftrightarrow\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}< 0\) (vô lý)

Vậy ko tồn tại m thỏa mãn yêu cầu

13 tháng 7 2021

cảm ơn tất cả mọi người,đấy là bài cuối của tuần này rồi

13 tháng 11 2023

\(m^2-m+1=m^2-m+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall m\)

=>\(y=\left(m^2-m+1\right)x-\sqrt{27}\) đồng biến trên R

NV
17 tháng 7 2021

\(y'=\dfrac{2x^2-4mx-m^2+2m-1}{\left(x-m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi với mọi \(x>1\) ta có:

\(\left\{{}\begin{matrix}2x^2-4mx-m^2+2m-1\ge0\left(1\right)\\m\le1\end{matrix}\right.\)

Xét (1): ta có \(\Delta'=4m^2-2\left(-m^2+2m-1\right)=6m^2-4m+2>0\) ; \(\forall m\)

\(\Rightarrow\) (1) thỏa mãn khi: \(x_1< x_2\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-m^2+2m-1}{2}-2m+1\ge0\\2m< 2\end{matrix}\right.\) \(\Rightarrow-1-\sqrt{2}\le m\le-1+\sqrt{2}\)

NV
12 tháng 1 2022

\(y'=x^2-2\left(m-1\right)x+3\left(m-1\right)\)

Hàm đồng biến trên khoảng đã cho khi với mọi \(x>1\) ta luôn có:

\(g\left(x\right)=x^2-2\left(m-1\right)x+3\left(m-1\right)\ge0\)

\(\Rightarrow\min\limits_{x>1}g\left(x\right)\ge0\)

Do \(a=1>0;-\dfrac{b}{2a}=m-1\)

TH1: \(m-1\ge1\Rightarrow m\ge2\)

\(\Rightarrow g\left(x\right)_{min}=f\left(m-1\right)=\left(m-1\right)^2-2\left(m-1\right)^2+3\left(m-1\right)\ge0\)

\(\Rightarrow\left(m-1\right)\left(4-m\right)\ge0\Rightarrow1\le m\le4\Rightarrow2\le m\le4\)

TH2: \(m-1< 1\Rightarrow m< 2\Rightarrow g\left(x\right)_{min}=g\left(1\right)=m\ge0\)

Vậy \(0\le m\le4\)

28 tháng 11 2021

\(a,\Leftrightarrow\sqrt{\dfrac{m-2}{m+3}}>0\)

Mà \(\sqrt{\dfrac{m-2}{m+3}}\ge0\Leftrightarrow\sqrt{\dfrac{m-2}{m+3}}\ne0\Leftrightarrow m\ne2;m\ne-3\)

\(b,y=m^2x-5mx-6m=x\left(m^2-5m\right)-6m\)

Đồng biến \(\Leftrightarrow m^2-5m>0\Leftrightarrow m\left(m-5\right)>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>5\end{matrix}\right.\)

\(c,y=x\left(\dfrac{m+5}{m-2}-1\right)+\sqrt{m-2}=\dfrac{7}{m-2}x+\sqrt{m-2}\)

Đồng biến \(\Leftrightarrow\dfrac{7}{m-2}>0\Leftrightarrow m-2>0\Leftrightarrow m>2\)