cho mk hỏi với:
6x?+[16:2]=10x8
Vẫy cần tìm là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x-2\right)+x-2=0\\ \Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
\(x^2-2x+1=9\\ \Leftrightarrow\left(x-1\right)^2=9\\ \Leftrightarrow\left[{}\begin{matrix}x-1=-3\\x-1=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)
\(7x^2=2x\\ \Leftrightarrow7x^2-2x=0\\ \Leftrightarrow x\left(7x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\7x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{7}\end{matrix}\right.\)
\(x^2-6x=8\\ \Leftrightarrow x^2-6x-8=0\\ \left(x^2-6x+9\right)-17=0\\ \Leftrightarrow\left(x-3\right)^2-\sqrt{17^2}=0\\ \Leftrightarrow\left(x-3-\sqrt{17}\right)\left(x-3+\sqrt{17}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3-\sqrt{17}=0\\x-3+\sqrt{17}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{17}\\x=3-\sqrt{17}\end{matrix}\right.\)
Bài 2:
a.
$(6x+1)^2+(6x-1)^2-2(6x+1)(6x-1)$
$=[(6x+1)-(6x-1)]^2=2^2=4$
b.
$3(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$
$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$
$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)$
$=(2^8-1)(2^8+1)(2^{16}+1)$
$=(2^{16}-1)(2^{16}+1)=2^{32}-1$
c.
$2C=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^{16}+1)$
$=(5^4-1)(5^4+1)(5^8+1)(5^{16}+1)$
$=(5^8-1)(5^8+1)(5^{16}+1)$
$=(5^{16}-1)(5^{16}+1)=5^{32}-1$
$\Rightarrow C=\frac{5^{32}-1}{2}$
Tìm GTNN của A=\(x^4-6x^3+12x^2-12x+2021\)
Giúp mk vs ạ mk đang cần gấp ai nhanh mk sẽ vote cho ạ :<
\(Sửa:A=x^4-6x^3+13x^2-12x+2021\\ A=\left(x^4-6x^3+9x^2\right)+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x\right)^2+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x+2\right)^2+2017\ge2017\\ A_{min}=2017\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
410 x 815 = (22)10 x (23)15
= 22.10 x 23.15
= 220 x 245
= 220+45
= 265
164 x 325 = (24)4 x (25)5
= 216 x 225
= 216+25
= 241
Tick mik nha
Câu hỏi của Lê Thị Thanh Quỳnh - Toán lớp 6 - Học toán với OnlineMath
\(\left(x^2+6x+8\right)\left(x^2+14x+48\right)+16\)
\(=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x\right)^2+40\left(x^2+10x\right)+400\)
\(=\left(x^2+10x+20\right)^2\)
Ít thôi -..-
a) ( 3x + 2 )( 2x + 9 ) - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )
<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )
<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4
<=> 12x + 15 = 2x + 5
<=> 12x - 2x = 5 - 15
<=> 10x = -10
<=> x = -1
b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )
<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20
<=> 3x2 - 12x - 2 = 3x2 - 17x + 20
<=> 3x2 - 12x - 3x2 + 17x = 20 + 2
<=> 5x = 22
<=> x = 22/5
c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8
<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
<=> 12x + 16 = -8
<=> 12x = -24
<=> x = -2
d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16
<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16
<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16
<=> 8x2 - 9x - 4 = 16
<=> 8x2 - 9x - 4 - 16 = 0
<=> 8x2 - 9x - 20 = 0
( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm
2 là nghiệm vô tỉ =) )
a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)
=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)
=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4
=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)
=> 12x + 15 = 2x + 5
=> 12x + 15 - 2x - 5 = 0
=> 10x + 10 = 0
=> 10x = -10 => x = -1
b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)
=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20
=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20
=> 3x2 - 12x - 2 = 3x2 - 17x + 20
=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0
=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0
=> 5x - 22 = 0
=> 5x = 22 => x = 22/5
c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8
=> x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 + 12x = -8
=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8
=> 12x + 16 = -8
=> 12x = -24
=> x = -2
Còn bài cuối làm nốt
Lời giải:
a. $9x^2-16-(3x-4)(2x+5)=0$
$\Leftrightarrow [(3x)^2-4^2]-(3x-4)(2x+5)=0$
$\Leftrightarrow (3x-4)(3x+4)-(3x-4)(2x+5)=0$
$\Leftrightarrow (3x-4)(3x+4-2x-5)=0$
$\Leftrightarrow (3x-4)(x-1)=0$
$\Leftrightarrow 3x-4=0$ hoặc $x-1=0$
$\Leftrightarrow x=\frac{4}{3}$ hoặc $x=1$.
b.
$x^2+4x=12$
$\Leftrightarrow x^2+4x-12=0$
$\Leftrightarrow (x^2-2x)+(6x-12)=0$
$\Leftrightarrow x(x-2)+6(x-2)=0$
$\Leftrightarrow (x-2)(x+6)=0$
$\Leftrightarrow x-2=0$ hoặc $x+6=0$
$\Leftrightarrow x=2$ hoặc $x=-6$
c.
$x^2-2x=35$
$\Leftrightarrow x^2-2x-35=0$
$\Leftrightarrow (x^2+5x)-(7x+35)=0$
$\Leftrightarrow x(x+5)-7(x+5)=0$
$\Leftrightarrow (x+5)(x-7)=0$
$\Leftrightarrow x+5=0$ hoặc $x-7=0$
$\Leftrightarrow x=-5$ hoặc $x=7$
\(\frac{x-2}{4}=-\frac{16}{2-x}\)
\(\Leftrightarrow x-2=-\frac{64}{2-x}\)
\(\Leftrightarrow\left(x-2\right)\left(2-x\right)=-64\)
\(\Leftrightarrow2x-x^2-4+2x=-64\)
\(\Leftrightarrow4x-x^2-4+64=0\)
\(\Leftrightarrow4x-x^2-60=0\)
\(\Leftrightarrow x^2-4x-60=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-6\end{cases}}}\)
Vậy \(x\in\left\{10;-6\right\}\)
Dễ mà bạn:
6x?+[16:2]=10x8
6x?+8=80
=>80-8:6=12
Vậy? cần tìm là:12