Cho A gồm 100 số hạng :\(\dfrac{1}{1.1!}\) + \(\dfrac{1}{2.2!}\) + \(\dfrac{1}{3.3!}\) + ... + \(\dfrac{1}{2013.2013!}\)
Chứng minh rằng : A < \(\dfrac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4S=1+24+342+....+2014420134S=1+24+342+....+201442013
4S−S=3S=1+24+342+....+201442013−(14+242+343+....+201442014)4S−S=3S=1+24+342+....+201442013−(14+242+343+....+201442014)
3S=1+(24−14)+(342−242)+......+(201442013−201342013)−2014420143S=1+(24−14)+(342−242)+......+(201442013−201342013)−201442014
3S=1+14+142+143+.....+142013−2014420143S=1+14+142+143+.....+142013−201442014
đặt A=1+14+142+143+....+142023A=1+14+142+143+....+142023
4A−A=4+1+14+142+.....+142022−(1+14+142+....+142023)4A−A=4+1+14+142+.....+142022−(1+14+142+....+142023)
3A=4−1420233A=4−142023
A=43−13.42023A=43−13.42023
⇒3S=43−13.42023−201442024⇒3S=43−13.42023−201442024
⇒S=49−19.42023−20143.42024⇒S=49−19.42023−20143.42024
do 49<48=1249<48=12
⇒S=49−19.42023−20143.42024<48=12(đpcm)
Ta có: A=1.2.3.....99.100.(\(1+\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{99}+\dfrac{1}{100}\))
\(=1.2.3...100\left[\left(1+\dfrac{1}{100}\right)+\left(\dfrac{1}{2}+\dfrac{1}{99}\right)+......+\left(\dfrac{1}{50}+\dfrac{1}{51}\right)\right]\)
=>A= 1.2...100.\(\left[\dfrac{101}{100}+\dfrac{101}{2.99}+......+\dfrac{101}{50.51}\right]\)
=1.2.....100.101\(\left[\dfrac{1}{100}+\dfrac{1}{2.99}+.....+\dfrac{1}{50.51}\right]⋮101\)
Vậy A chia hết cho 101
@Ace Legona
Nhận thấy \(\)\(\dfrac{1}{1.1!}=1\); \(\dfrac{1}{2.2!}=\dfrac{1}{4}\)
Đặt \(P=\dfrac{1}{3.3!}+...+\dfrac{1}{2013.2013!}\)
\(P=\dfrac{1}{3.1.2.3}+...+\dfrac{1}{2013.1.2...2013}\)
\(P< \dfrac{1}{1.2.3}+...+\dfrac{1}{2011.2012.2013}\)
\(P< \dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+...+\dfrac{1}{2011.2012}-\dfrac{1}{2012.2013}\right)\)
\(P< \dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2012.2013}\right)=\dfrac{1}{4}-\dfrac{1}{2.2012.2013}\)
\(P< \dfrac{1}{4}\)
\(A< \dfrac{1}{4}+\dfrac{1}{4}+1=\dfrac{3}{2}\left(đpcm\right)\)