K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

a)\(\dfrac{17}{15}>1;\dfrac{29}{37}< 1\Leftrightarrow\dfrac{17}{15}>\dfrac{29}{37}\)

b) \(\dfrac{13}{17}>\dfrac{13}{18}\Leftrightarrow\dfrac{13}{17}>\dfrac{12}{18}\)

d)\(1-\dfrac{2017}{2018}=\dfrac{1}{2018}\)

\(1-\dfrac{2018}{2019}=\dfrac{1}{2019}\)

\(\dfrac{1}{2018}>\dfrac{1}{2019}\Leftrightarrow\dfrac{2017}{2018}< \dfrac{2018}{2019}\)

e) \(\dfrac{2018}{2017}< 1;\dfrac{2019}{2018}>1\Leftrightarrow\dfrac{2018}{2017}< \dfrac{2019}{2018}\)

a: 

13/17=1-4/17

8/12=1-4/12

mà 4/17<4/12

nên 13/17>8/12=12/18

b: 16/51<17/51=1/3=30/90<31/90

18 tháng 5 2023

12/18<13/17

16/51>31/90

\(A>\dfrac{2^{2018}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{3^{2019}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{5^{2020}}{5^{2020}+2^{2018}+3^{2019}}=1\)

\(B< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\)

=>B<1

=>A>B

4 tháng 8 2021

A=\(\dfrac{2018}{987654321}+\dfrac{2018}{24683579}+\dfrac{1}{24683579}\)

B=\(\dfrac{2018}{987654321}+\dfrac{2018}{24683579}+\dfrac{1}{987654321}\)

Vì \(\dfrac{1}{987654321}< \dfrac{1}{24683579}\) nên B<A

18 tháng 2 2022

a)=

b)>

c)=

Ta có: \(C=\dfrac{2019-2018}{2019+2018}\)

\(\Leftrightarrow C=\dfrac{\left(2019-2018\right)\left(2019+2018\right)}{\left(2019+2018\right)^2}\)

\(\Leftrightarrow C=\dfrac{2019^2-2018^2}{\left(2019+2018\right)^2}\)

Ta có: \(\left(2019+2018\right)^2=2019^2+2018^2+2\cdot2019\cdot2018\)

\(2019^2+2018^2=2019^2+2018^2+0\)

Do đó: \(\left(2019+2018\right)^2>2019^2+2018^2\)

\(\Leftrightarrow\dfrac{2019^2-2018^2}{\left(2019+2018\right)^2}< \dfrac{2019^2-2018^2}{2019^2+2018^2}\)

\(\Leftrightarrow C< D\)

6 tháng 8 2017

Ta có : \(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Rõ ràng ta thấy : \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\) (1)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\) (2)

Từ (1)(2), suy ra :

\(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

Vậy ......................

~ Học tốt ~

6 tháng 8 2017

Ta có : \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)

\(=3+\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)

Vậy \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)

16 tháng 9 2023

\(a,MSC:180\\ \dfrac{17}{12}=\dfrac{17.15}{12.15}=\dfrac{255}{180};\dfrac{31}{18}=\dfrac{31.10}{18.10}=\dfrac{310}{180};\dfrac{8}{15}=\dfrac{8.12}{15.12}=\dfrac{96}{180}\\ b,MSC:75\\ \dfrac{7}{15}=\dfrac{7.5}{15.5}=\dfrac{35}{75};\dfrac{8}{25}=\dfrac{8.3}{25.3}=\dfrac{24}{75};\dfrac{11}{75}=\dfrac{11}{75}\)

a) \(\dfrac{-1}{20}=\dfrac{-7}{140}\)

\(\dfrac{5}{7}=\dfrac{100}{140}\)

mà -7<100

nên \(-\dfrac{1}{20}< \dfrac{5}{7}\)

b) \(\dfrac{216}{217}< 1\)

\(1< \dfrac{1164}{1163}\)

nên \(\dfrac{216}{217}< \dfrac{1164}{1163}\)

c) \(\dfrac{-12}{17}=\dfrac{-180}{255}\)

\(\dfrac{-14}{15}=\dfrac{-238}{255}\)

mà -180>-238

nên \(-\dfrac{12}{17}>\dfrac{-14}{15}\)

d) \(\dfrac{27}{29}>0\)

\(0>-\dfrac{2727}{2929}\)

nên \(\dfrac{27}{29}>-\dfrac{2727}{2929}\)