1.Tìm x
a)\(\dfrac{3x+2}{5x+7}\)=\(\dfrac{3x-1}{5x+1}\)
b)\(\dfrac{x+1}{2x+1}\)=\(\dfrac{6,5x+2}{x+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Rightarrow10x-4+6x=6+15-9x\Leftrightarrow7x=25\Leftrightarrow x=\dfrac{25}{7}\)
b, \(\Rightarrow2\left(3x^2+5x-2\right)-6x^2-3=33\Leftrightarrow10x-7=33\Leftrightarrow x=4\)
c, \(\Rightarrow12x-10x-4=21-9x\Leftrightarrow11x=25\Leftrightarrow x=\dfrac{25}{11}\)
d, \(\Rightarrow3x-3+2x-2-x+1=12\Leftrightarrow4x=16\Leftrightarrow x=4\)
a, 3x - 7 = 0
<=> 3x = 7
<=> x = 7/3
b, 8 - 5x = 0
<=> -5x = -8
<=> x = 8/5
c, 3x - 2 = 5x + 8
<=> -2x = 10
<=> x = -5
e) Ta có: \(\left(5x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-1\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{5};3\right\}\)
a: \(\Leftrightarrow7\left(7-3x\right)+12\left(5x+2\right)=84\left(x+13\right)\)
\(\Leftrightarrow49-21x+60x+24=84x+1092\)
\(\Leftrightarrow39x-84x=1092-73\)
=>-45x=1019
hay x=-1019/45
b: \(\Leftrightarrow21\left(x+3\right)-14=4\left(5x+9\right)-7\left(7x-9\right)\)
=>21x+63-14=20x+36-49x+63
=>21x+49=-29x+99
=>50x=50
hay x=1
c: \(\Leftrightarrow7\left(2x+1\right)-3\left(5x+2\right)=21x+63\)
=>14x+7-15x-6-21x-63=0
=>-22x-64=0
hay x=-32/11
d: \(\Leftrightarrow35\left(2x-3\right)-15\left(2x+3\right)=21\left(4x+3\right)-17\cdot105\)
=>70x-105-30x-45=84x+63-1785
=>40x-150-84x+1722=0
=>-44x+1572=0
hay x=393/11
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
\(\text{a) }\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\\ \Leftrightarrow4\left(5x^2-3x\right)+5\left(3x+1\right)< 10x\left(2x+1\right)-15\\ \Leftrightarrow20x^2-12x+15x+5< 20x^2+10x-15\\ \Leftrightarrow20x^2+3x-20x^2-10x< -15-5\\ \Leftrightarrow-7x< -20\\ \Leftrightarrow x>\dfrac{20}{7}\)
Vậy bất phương trình có nghiệm \(x>\dfrac{20}{7}\)
\(\text{b) }\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\\ \Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)\ge4x\left(1-3x\right)-15x\\ \Leftrightarrow20x-80-12x^2-6x\ge4x-12x^2-15x\\ \Leftrightarrow-12x^2+14x+12x^2+11x\ge80\\ \Leftrightarrow25x\ge80\\ \Leftrightarrow x\ge\dfrac{16}{5}\)
Vậy bất phương trình có nghiệm \(x\ge\dfrac{16}{5}\)
\(\text{c) }\left(x+3\right)^2\le x^2-7\\ \Leftrightarrow x^2+6x+9\le x^2-7\\ \Leftrightarrow x^2+6x-x^2\le-7-9\\ \Leftrightarrow6x\le-16\\ \Leftrightarrow x\le-\dfrac{8}{3}\)
Vậy bất phương trình có nghiệm \(x\le-\dfrac{8}{3}\)
a: \(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(2x+3\right)-100\)
\(\Leftrightarrow20x^2-12x+15x-5< 20x^2+30x-100\)
=>3x-5<=30x-100
=>30x-100>3x-5
=>27x>95
hay x>95/27
b: \(\Leftrightarrow4\left(5x-2\right)-6\left(2x^2-x\right)< 4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-8-12x^2+6x< 4x-12x^2-15x\)
=>26x-8<-11x
=>37x<8
hay x<8/37
a/ đk: x khác -7/5 ; x khác -1/5
pt <=> \(\dfrac{\left(3x+2\right)\left(5x+1\right)}{\left(5x+7\right)\left(5x+1\right)}=\dfrac{\left(3x-1\right)\left(5x+7\right)}{\left(5x+7\right)\left(5x+1\right)}\)
\(\Rightarrow15x^2+13x+2=15x^2+16x-7\)
\(\Leftrightarrow15x^2+13x-15x^2-16x^2=-7-2\)
\(\Leftrightarrow-3x=-9\Leftrightarrow x=3\left(tm\right)\)
vậy x = 3
b/ đk: x khác -1/2; x khác -3
pt <=> \(\dfrac{\left(x+1\right)\left(x+3\right)}{\left(2x+1\right)\left(x+3\right)}=\dfrac{\left(0,5x+2\right)\left(2x+1\right)}{\left(2x+1\right)\left(x+3\right)}\)
\(\Rightarrow x^2+4x+3=x^2+4,5x+2\)
\(\Leftrightarrow x^2+4x-x^2-4,5x=2-3\)
\(\Leftrightarrow-0,5x=-1\Leftrightarrow x=2\left(tm\right)\)
vậy x = 2
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x+1}=\dfrac{\left(3x+2\right)-\left(3x-1\right)}{\left(5x+7\right)-\left(5x+1\right)}=\dfrac{3}{6}=\dfrac{1}{2}\)
\(\Rightarrow2\left(3x+2\right)=5x+7\)
\(\Rightarrow6x+4=5x+7\)
\(\Leftrightarrow x=3\)
Vậy x = 3
b) Ta có: \(\dfrac{0,5x+2}{x+3}=\dfrac{2\left(0,5x+2\right)}{2\left(x+3\right)}=\dfrac{x+4}{2x+6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+1}{2x+1}=\dfrac{0,5x+2}{x+3}=\dfrac{x+4}{2x+6}=\dfrac{\left(x+4\right)-\left(x+1\right)}{\left(2x+6\right)-\left(2x+1\right)}=\dfrac{3}{5}\)
\(\Rightarrow5\left(x+1\right)=3\left(2x+1\right)\)
\(\Rightarrow5x+5=6x+3\)
\(\Leftrightarrow x=2\)
Câu a bạn coi lại đề
b. ĐKXĐ: \(x\ge0;x\ne1\)
\(\Leftrightarrow\dfrac{\sqrt{2x+1}+\sqrt{3x}}{1-x}=\dfrac{\sqrt{3x+2}}{1-x}\)
\(\Leftrightarrow\sqrt{2x+1}+\sqrt{3x}=\sqrt{3x+2}\)
\(\Leftrightarrow5x+1+2\sqrt{3x\left(2x+1\right)}=3x+2\)
\(\Leftrightarrow2\sqrt{6x^2+3x}=1-2x\) (\(x\le\dfrac{1}{2}\) )
\(\Leftrightarrow4\left(6x^2+3x\right)=4x^2-4x+1\)
\(\Leftrightarrow20x^2+16x-1=0\)
\(\Rightarrow x=\dfrac{-4+\sqrt{21}}{10}\)
a) Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x+1}=\dfrac{3x+2-3x+1}{5x+7-5x-1}=\dfrac{3}{6}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}3x+2=\dfrac{5x+7}{2}\\3x-1=\dfrac{5x+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+4=5x+7\\6x-2=5x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=3\end{matrix}\right.\)(Nhận)
Vậy x = 3
b) Giống vậy :)
a, \(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x+1}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(5x+7\right)\left(3x-1\right)\)
\(\Leftrightarrow15x^2+3x+10x+2=15x^2-5x+21x-7\)
\(\Leftrightarrow15x^2+13x=15x^2+16x-9\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\)
Vậy x = 3
b, Tương tự