Cho tam giác ABC vuông tại A có AH là đường cao. A/ C/m
1)tam giác ABC đồng dạng với tam giác HBA.
2) AB bình phương= BH x BC
3) AC bình phương = CH x BC
B/ Gọi AD là phân giác góc BAC, D thuộc BC. Cmr DB bình phương x CH =BH X DC bình phương
4) AB bình phương + AC bình phương= BC bình phương ( không dùng pytago)
5) AH bình phương = BH x BC
6) 1/AB bình phương 1/AC bình phương= 1/AH bình phương
1: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔABH\(\sim\)ΔCBA
2: Ta có: ΔABH\(\sim\)ΔCBA
nên \(\dfrac{BA}{BC}=\dfrac{BH}{BA}\)
hay \(BA^2=BH\cdot BC\)