Cho hình thoi ABCD có góc B tù, Từ B hạ BM và BN lần luợt vuông góc với AD và CD.Từ D hạ DP và DQ lần lượt vuông góc với AD và BC.Gọi H là giao điểm của BM và PD,K là giao điểm của BM và DQ
CMR 4 điểm A,D,C,H thẳng hàng
CMR tứ giác DHPK là hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD có
BM,DP là đường cao
BM cắt DP tại H
Do đó: H là trực tâm của ΔABD
b: Xét ΔCBD có
DQ,BN là đường cao
DQ cắt BN tại K
Do đó: K là trực tâm của ΔCBD
=>CK vuông góc BD
H là trực tâm của ΔABD
=>AH vuông góc BD
ABCD là hình thoi
=>AC vuông góc BD
mà AH vuông góc BD
nên A,H,C thẳng hàng(1)
AC vuông góc BD
CK vuông góc BD
Do đó: A,C,K thẳng hàng(2)
Từ (1),(2) suy ra A,C,K,H thẳng hàng
a: Xét ΔPBD vuông tại P và ΔMDB vuông tại M có
DB chung
góc PBD=góc MDB
=>ΔPBD=ΔMDB
=>góc HBD=góc HDB
=>HB=HD
=>H nằm trên trung trực của BD(1)
Xét ΔQBD vuông tại Q và ΔNDB vuông tại N có
BD chung
góc QBD=góc NDB
=>ΔQBD=ΔNDB
=>góc KBD=góc KDB
=>K nằm trên trung trực của BD(2)
Vì ABCD là hình thoi
nên AC là trung trực của BD(3)
Từ (1), (2), (3) suy ra A,H,K,C thẳng hàng
b: Xét tứ giác BHDK có
BH//DK
BK//DH
BH=HD
=>BHDK là hình thoi
a: Xét ΔPBD vuông tại P và ΔMDB vuông tại M có
DB chung
góc PBD=góc MDB
=>ΔPBD=ΔMDB
=>góc HBD=góc HDB
=>HB=HD
=>H nằm trên trung trực của BD(1)
Xét ΔQBD vuông tại Q và ΔNDB vuông tại N có
BD chung
góc QBD=góc NDB
=>ΔQBD=ΔNDB
=>góc KBD=góc KDB
=>K nằm trên trung trực của BD(2)
Vì ABCD là hình thoi
nên AC là trung trực của BD(3)
Từ (1), (2), (3) suy ra A,H,K,C thẳng hàng
b: Xét tứ giác BHDK có
BH//DK
BK//DH
BH=HD
=>BHDK là hình thoi
a: Xét ΔPBD vuông tại P và ΔMDB vuông tại M có
DB chung
góc PBD=góc MDB
=>ΔPBD=ΔMDB
=>góc HBD=góc HDB
=>HB=HD
=>H nằm trên trung trực của BD(1)
Xét ΔQBD vuông tại Q và ΔNDB vuông tại N có
BD chung
góc QBD=góc NDB
=>ΔQBD=ΔNDB
=>góc KBD=góc KDB
=>K nằm trên trung trực của BD(2)
Vì ABCD là hình thoi
nên AC là trung trực của BD(3)
Từ (1), (2), (3) suy ra A,H,K,C thẳng hàng
b: Xét tứ giác BHDK có
BH//DK
BK//DH
BH=HD
=>BHDK là hình thoi
a: Xét ΔPBD vuông tại P và ΔMDB vuông tại M có
DB chung
góc PBD=góc MDB
=>ΔPBD=ΔMDB
=>góc HBD=góc HDB
=>HB=HD
=>H nằm trên trung trực của BD(1)
Xét ΔQBD vuông tại Q và ΔNDB vuông tại N có
BD chung
góc QBD=góc NDB
=>ΔQBD=ΔNDB
=>góc KBD=góc KDB
=>K nằm trên trung trực của BD(2)
Vì ABCD là hình thoi
nên AC là trung trực của BD(3)
Từ (1), (2), (3) suy ra A,H,K,C thẳng hàng
b: Xét tứ giác BHDK có
BH//DK
BK//DH
BH=HD
=>BHDK là hình thoi
a: Xét ΔPBD vuông tại P và ΔMDB vuông tại M có
DB chung
góc PBD=góc MDB
=>ΔPBD=ΔMDB
=>góc HBD=góc HDB
=>HB=HD
=>H nằm trên trung trực của BD(1)
Xét ΔQBD vuông tại Q và ΔNDB vuông tại N có
BD chung
góc QBD=góc NDB
=>ΔQBD=ΔNDB
=>góc KBD=góc KDB
=>K nằm trên trung trực của BD(2)
Vì ABCD là hình thoi
nên AC là trung trực của BD(3)
Từ (1), (2), (3) suy ra A,H,K,C thẳng hàng
b: Xét tứ giác BHDK có
BH//DK
BK//DH
BH=HD
=>BHDK là hình thoi
a: Xét ΔAMB vuông tại M và ΔAPD vuông tại P có
AB=AD
góc A chung
Do đó: ΔAMB=ΔAPD
=>AM=AP
Xét ΔAMH vuông tại M và ΔAPH vuông tại P có
AH chung
AM=AP
Do đó: ΔAMH=ΔAPH
=>góc MAH=góc PAH
=>AH là phân giác của góc BAD(1)
ΔABD cân tại A
mà AO là trung tuyến
nên AO là phân giác của góc BAD(2)
Từ (1), (2) suy ra A,H,O thẳng hàng
b: Xét ΔCDB có
DQ,BN là đường cao
DQ cắt BN tại K
Do đó; K là trực tâm của ΔCDB
=>CK vuông góc BD
ΔCBD cân tại C
mà CO là trung tuyến
nên CO vuông góc BD
=>C,K,O thẳng hàng
C,K,O thẳng hàng
A,H,O thẳng hàng
A,O,C thẳng hàng(ABCD là hình thoi có O là giao của hai đường chéo AC và BD)
Do đó: C,K,O,H,A thẳng hàng
=>A,H,K,C thẳng hàng
=>HK vuông góc DB
c: Xét tứ giác BHDK có
BH//DK
BK//DH
Do đó: BHDK là hình bình hành
mà HK vuông góc BD
nên BHDK là hình thoi
a: Xét ΔPBD vuông tại P và ΔMDB vuông tại M có
DB chung
góc PBD=góc MDB
=>ΔPBD=ΔMDB
=>góc HBD=góc HDB
=>HB=HD
=>H nằm trên trung trực của BD(1)
Xét ΔQBD vuông tại Q và ΔNDB vuông tại N có
BD chung
góc QBD=góc NDB
=>ΔQBD=ΔNDB
=>góc KBD=góc KDB
=>K nằm trên trung trực của BD(2)
Vì ABCD là hình thoi
nên AC là trung trực của BD(3)
Từ (1), (2), (3) suy ra A,H,K,C thẳng hàng
b: Xét tứ giác BHDK có
BH//DK
BK//DH
BH=HD
=>BHDK là hình thoi
1.
gọi H, K lần lượt là hình chiếu vuông góc của D lên cạnh AF, CE
Dễ dàng chứng minh đc
S AFD=S CED=1/2 S ABCD
S AFD=1/2 AF.DH, S AFD=1/2.CE.DK ( VÌ CE = AF )
=> DH=DK
=> ĐPCM