Chứng tỏ
\(\dfrac{1}{3} + \dfrac{1}{3^2} +...+ \dfrac{1}{3^{99}}<1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề : \(F=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(\dfrac{1}{1^2}< \dfrac{1}{1.2};\dfrac{1}{2^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
Cộng vế với vế
\(\dfrac{1}{1^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+...+\dfrac{1}{99.100}=1-\dfrac{1}{2}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)< 7/4
Vậy ta có đpcm
\(2^2< 2.3\Rightarrow\dfrac{1}{2^2}>\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)
Tương tự: \(\dfrac{1}{3^2}>\dfrac{1}{3}-\dfrac{1}{4}\) ; \(\dfrac{1}{4^2}>\dfrac{1}{4}-\dfrac{1}{5}\) ; ....; \(\dfrac{1}{100^2}>\dfrac{1}{100}-\dfrac{1}{101}\)
Do đó:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}>\dfrac{1}{2}-\dfrac{1}{101}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}>\dfrac{99}{202}\)
A= \(\dfrac{1}{3}-\dfrac{2}{3^2}+....+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
3A= 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+.....+\dfrac{99}{3^{98}}\) - \(\dfrac{100}{3^{99}}\)
A + 3A = 1- \(\dfrac{1}{3}+\dfrac{1}{3^2}\) - \(\dfrac{1}{3^3}+....+\dfrac{1}{3^{99}}-\dfrac{1}{3^{100}}\)
=> 4A < 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}\) \(\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
Đặt : B = 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+....+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
3B = 3 - 1 + \(\dfrac{1}{3}\) - \(\dfrac{1}{3^2}+.....+\dfrac{1}{3^{97}}-\dfrac{1}{3^{98}}\)
B + 3B = 3 - \(\dfrac{1}{3^{99}}\)
4B = 3 - \(\dfrac{1}{3^{99}}\) < 3 => B < \(\dfrac{3}{4}\)
=> 4A < \(\dfrac{3}{4}\) => A < \(\dfrac{3}{16}\) ĐPCM
\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
\(=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
\(\Rightarrow A< 1.\left(\dfrac{1}{2.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(\Rightarrow A< 1+\left(\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(\Rightarrow A< 1+\left(\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{100}\right)\)
Mà ta thấy \(\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Rightarrow A< 1+\dfrac{3}{4}=\dfrac{7}{4}\)
Ta có
B = \(\dfrac{1}{2!}\) + \(\dfrac{2}{3!}\) + \(\dfrac{3}{4!}\) + ..... + \(\dfrac{99}{100!}\)
B = \(\dfrac{2-1}{2!}\) + \(\dfrac{3-1}{3!}\) + \(\dfrac{4-1}{4!}\) + ... + \(\dfrac{100-1}{100!}\)
B = \(\dfrac{2}{2!}\) - \(\dfrac{1}{2!}\) + \(\dfrac{3}{3!}\) - \(\dfrac{1}{3!}\) + ... + \(\dfrac{100}{100!}\) - \(\dfrac{1}{100!}\)
B = 1 - \(\dfrac{1}{2!}\) + \(\dfrac{1}{2!}\) - \(\dfrac{1}{3!}\) + ... + \(\dfrac{1}{99!}\)- \(\dfrac{1}{100!}\)
B = 1 - \(\dfrac{1}{100!}\) < 1
=> B < 1 <đpcm>
B=\(\dfrac{1}{2!}\)+\(\dfrac{2}{3!}+\dfrac{3}{4!}\)+...+\(\dfrac{99}{100!}\)
=\(\dfrac{2-1}{2!}\)+\(\dfrac{3-1}{3!}+\dfrac{4-1}{4!}\)+...+\(\dfrac{100-1}{100!}\)
=\(\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+\dfrac{4}{4!}-\dfrac{1}{4!}+...+\dfrac{100}{100!}-\dfrac{1}{100!}\)
=\(\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{1}{3!}-\dfrac{1}{4!}+...+\dfrac{1}{99!}-\dfrac{1}{100!}\)
=\(1-\dfrac{1}{100!}\)< 1
\(\Rightarrow\)B =\(\dfrac{1}{2!}\)+\(\dfrac{2}{3!}+\dfrac{3}{4!}\)+...+\(\dfrac{99}{100!}\) < 1
Chúc bạn học tốt !
Ta có :
\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{2}{5}+............+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.................+\dfrac{99}{100}}\)
\(=\dfrac{200-2-\left(\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+.............+\dfrac{2}{100}\right)}{1-\dfrac{1}{2}+1-\dfrac{1}{3}+............+1-\dfrac{1}{100}}\)
\(=\dfrac{198-\left(\dfrac{2}{2}+\dfrac{2}{3}+...........+\dfrac{2}{100}\right)}{\left(1+1+.........+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}+........+\dfrac{1}{100}\right)}\)
\(=\dfrac{2.\left[99-\left(\dfrac{1}{2}+\dfrac{1}{3}+..........+\dfrac{1}{100}\right)\right]}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+.........+\dfrac{1}{100}\right)}\)
\(=2\)
Vậy \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+..........+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+........+\dfrac{99}{100}}=2\rightarrowđpcm\)
Đặt :
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+......................+\dfrac{1}{3^{99}}\)
\(\Leftrightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+................+\dfrac{1}{3^{98}}\)
\(\Leftrightarrow3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+..............+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+................+\dfrac{1}{3^{99}}\right)\)\(\Leftrightarrow2A=1-\dfrac{1}{3^{99}}< 1\)
\(\Leftrightarrow A< 1\)
Vậy \(\dfrac{1}{3}+\dfrac{1}{3^2}+..............+\dfrac{1}{3^{99}}< 1\rightarrowđpcm\)
Đặt:
\(S=\dfrac{1}{3}+\dfrac{1}{3^2}+.....+\dfrac{1}{3^{99}}\)
\(3S=3\left(\dfrac{1}{3}+\dfrac{1}{3^2}+....+\dfrac{1}{3^{99}}\right)\)
\(3S=1+\dfrac{1}{3}+.....+\dfrac{1}{3^{98}}\)
\(3S-S=\left(1+\dfrac{1}{3}+....+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+....+\dfrac{1}{3^{99}}\right)\)
\(2S=1-\dfrac{1}{3^{99}}\)
\(2S< 1\)
\(S< 1\rightarrowđpcm\)