K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

ĐKXĐ: \(x\ne-1;x\ne2\)

\(\dfrac{x^2-x}{x^2-x+1}-\dfrac{x^2-x+2}{x^2-x-2}=1\) (1)

\(\Leftrightarrow\dfrac{x^2-x}{x^2-x+1}-\dfrac{x^2-x+2}{x^2-x-2}-1=0\)

\(\Leftrightarrow\dfrac{\left(x^2-x-2\right)\left(x^2-x\right)-\left(x^2-x+1\right)\left(x^2-x+2\right)-\left(x^2-x+1\right)\left(x^2-x-2\right)}{\left(x^2-x+1\right)\left(x^2-x-2\right)}=0\)

\(\Leftrightarrow\dfrac{2x^3-5x^2+4x-x^4}{\left(x^2-x+1\right)\left(x^2-x-2\right)}=0\)

\(\Leftrightarrow2x^3-5x^2+4x-x^4=0\)

\(\Leftrightarrow x\left(2x^2-5x+4-x^3\right)=0\)

\(\Leftrightarrow x\left(-x^3+2x^2-5x+4\right)=0\)

\(\Leftrightarrow x\left(-x^3+x^2+x^2-x-4x+4\right)=0\)

\(\Leftrightarrow x\left[-\left(x-1\right)\right]\left(x^2-x+4\right)=0\)

\(\Leftrightarrow-x\left(x-1\right)\left(x^2-x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x-1=0\\x^2-x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\left(đk:x\ne-1;x\ne2\right)\\x\notin R\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{0;1\right\}\)

30 tháng 10 2018

b) \(\left(x-3\right)^2+3x-22=\sqrt{x^2-3x+7}\)

\(\Leftrightarrow x^2-6x+9+3x-22=\sqrt{x^2-3x+7}\)

\(\Leftrightarrow\left(x^2-3x+7\right)-\sqrt{x^2-3x+7}-20=0\)

Đặt \(\sqrt{x^2-3x+7}=t\left(t\ge0\right)\left(1\right)\)

\(\Rightarrow t^2-t-20=0\)

\(\Rightarrow x_1=5\left(TM\right);x_2=-4\left(KTM\right)\)

Thay t=5 vào (1), ta có :

\(\sqrt{x^2-3x+7}=5\)

\(\Leftrightarrow x^2-3x+7=25\)

\(\Leftrightarrow x^2-3x-18=0\)

\(\Rightarrow x_1=6;x_2=-3\)

vậy...

30 tháng 10 2018

xl bn tớ gửi nhầm

18 tháng 11 2022

a: ĐKXĐ: x>=0

b: \(\Leftrightarrow\dfrac{2\sqrt{2}-2\sqrt{2-\sqrt{x}}+\sqrt{2x}-\sqrt{x\left(2-\sqrt{x}\right)}+2\sqrt{2}+2\sqrt{2+\sqrt{x}}-\sqrt{2x}-\sqrt{x\left(2+\sqrt{x}\right)}}{2-2+\sqrt{x}}=\sqrt{2}\)

\(\Leftrightarrow4\sqrt{2}-2\sqrt{x\left(\sqrt{x}+2\right)}=\sqrt{2x}\)

\(\Leftrightarrow\sqrt{4x\left(\sqrt{x}+2\right)}=4\sqrt{2}-\sqrt{2x}\)

\(\Leftrightarrow4x\left(\sqrt{x}+2\right)=32-16\sqrt{x}+2x\)

\(\Leftrightarrow4x\sqrt{x}+8x-32+16\sqrt{x}-2x=0\)

=>\(x\in\left\{0;1.2996\right\}\)

11 tháng 5 2018

5x-2>2(x+3)\(\Leftrightarrow\)5x-2>2x+6

\(\Leftrightarrow\) 5x-2x>6+2

\(\Leftrightarrow\)3x>8

\(\Leftrightarrow\)x>\(\dfrac{8}{3}\)

0 8/3

Chúc bn học tốt❤

15 tháng 8 2018

b , \(\sqrt{1-4x+4x^2}-3=0\)

\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=3\)

\(\Leftrightarrow\left|1-2x\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}1-2x=3\\1-2x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=2\\-2x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Vậy nghiệm của phương trình là \(S=\left\{-1,2\right\}\)

23 tháng 4 2018

\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\left(đkxđ:x\ne-4;-5;-6;-7\right)\)

\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-13\left(tm\right)\end{matrix}\right.\)

23 tháng 4 2018

\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\\ ĐKXĐ:x\ne-4;x\ne-5;x\ne-6;x\ne-7\\ \Rightarrow\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}\\ \Rightarrow\dfrac{1}{\left(x^2+4x\right)+\left(5x+20\right)}+\dfrac{1}{\left(x^2+5x\right)+\left(6x+30\right)}+\dfrac{1}{\left(x^2+6x\right)+\left(7x+42\right)}=\dfrac{1}{18}\\ \Rightarrow\dfrac{1}{x\left(x+4\right)+5\left(x+4\right)}+\dfrac{1}{x\left(x+5\right)+6\left(x+5\right)}+\dfrac{1}{x\left(x+6\right)+7\left(x+6\right)}=\dfrac{1}{18}\\ \Rightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Rightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\\ \Rightarrow\dfrac{1}{x+5}-\dfrac{1}{x+7}=\dfrac{1}{18}\\ \Rightarrow\dfrac{18\left(x+7\right)}{18\left(x+5\right)\left(x+7\right)}-\dfrac{18\left(x+5\right)}{18\left(x+5\right)\left(x+7\right)}=\dfrac{\left(x+5\right)\left(x+7\right)}{18\left(x+5\right)\left(x+7\right)}\\ \Rightarrow18x+126-18x-90=x^2+5x+7x+35\\ \Leftrightarrow x^2+12x+35=36\\ \Leftrightarrow x^2+12x-1=0\\ \Leftrightarrow x^2+12x+36-37=0\\ \Leftrightarrow\left(x^2+12x+36\right)-37=0\\ \Leftrightarrow\left(x+6\right)^2-37=0\\ \Leftrightarrow\left(x+6+\sqrt{37}\right)\left(x+6-\sqrt{37}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+6+\sqrt{37}=0\\x+6-\sqrt{37}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6-\sqrt{37}\\x=\sqrt{37}-6\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{\sqrt{37}-6;-\sqrt{37}-6\right\}\)

23 tháng 11 2022

\(\Leftrightarrow\dfrac{x+3+x-1+2\sqrt{\left(x+3\right)\left(x-1\right)}}{x+3-x+1}=\dfrac{13-x^2}{4}\)

\(\Leftrightarrow2x+2+2\sqrt{\left(x+3\right)\left(x-1\right)}=13-x^2\)

\(\Leftrightarrow\sqrt{4\left(x+3\right)\left(x-1\right)}=13-x^2-2x-2=-x^2-2x+11\)

=>\(x\simeq1,37\)

NV
20 tháng 11 2018

\(\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}=\dfrac{1}{2006}\sqrt{2006^2+2005^2+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{\left(2006-2005\right)^2+2.2005.2006+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{1+2.2005.2006+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{\left(2005.2006+1\right)^2}=\dfrac{2005.2006+1}{2006}=2005+\dfrac{1}{2006}\)

Phương trình tương đương:

\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2005+\dfrac{1}{2006}+\dfrac{2005}{2006}\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)

TH1: \(x\ge2\): \(x-1+x-2=2006\Rightarrow2x=2009\Rightarrow x=\dfrac{2009}{2}\)

TH2: \(x\le1\) : \(1-x+2-x=2006\Rightarrow-2x=2003\Rightarrow x=\dfrac{-2003}{2}\)

TH3: \(1< x< 2:\) \(x-1+2-x=2006\Rightarrow3=2006\) (vô nghiệm)

Vậy \(\left[{}\begin{matrix}x=\dfrac{2009}{2}\\x=\dfrac{-2003}{2}\end{matrix}\right.\)