Tìm x biết:
\(a,3\dfrac{1}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\)
\(b,\dfrac{1}{3}+\dfrac{2}{3}:x=-7\)
\(c,\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)
\(d,\left(2x-3\right)\left(6-2x\right)=0\)
\(e,x:\dfrac{3}{4}+\dfrac{1}{4}=-\dfrac{2}{3}\)
\(f,\dfrac{-2}{3}-\dfrac{1}{3}\left(2x-5\right)=\dfrac{3}{2}\)
\(g,2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\)
\(h,\dfrac{3}{4}-2.\left|2x-\dfrac{2}{3}\right|=2\)
\(i,\left(-0,6x-\dfrac{1}{2}\right).\dfrac{3}{4}-\left(-1\right)=\dfrac{1}{3}\)
\(j,\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)
\(k,\dfrac{1}{4}+\dfrac{1}{3}:\left(2x-1\right)=-5\)
\(l,\left(2x+\dfrac{3}{5}\right)^2-\dfrac{9}{25}=0\)
\(m,3\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\)
\(n,60\%x+\dfrac{2}{3}x=\dfrac{1}{3}.6\dfrac{1}{3}\)
\(p,-5\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(q,3\left(x-\dfrac{1}{2}\right)-5\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\)
a) \(\dfrac{x+3}{x-5}=\dfrac{x-5+8}{x-5}=\dfrac{x-5}{x-5}+\dfrac{8}{x-5}=1+\dfrac{8}{x-5}\)
Để \(\dfrac{x+3}{x-5}\) có giá trị âm thì \(8⋮x-5\) và \(x-5< 0\)
\(\Rightarrow x-5\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Để \(x-5< 0\Rightarrow x< 5\)
Nên \(x\in\left\{\pm1;\pm2;\pm4;-8\right\}\)
~ Học tốt ~
1) Tìm x
a) B(32) = { 0 , 32 , 64 , 96 , 128 ; 160 ; 192 ; ... }
b) \(\dfrac{11}{12}\) - ( \(\dfrac{2}{5}\) +x ) = \(\dfrac{2}{3}\)
\(\dfrac{2}{5}\) + x = \(\dfrac{11}{12}\) - \(\dfrac{2}{3}\)
\(\dfrac{2}{5}\) +x = \(\dfrac{1}{4}\)
x = \(\dfrac{1}{4}\) - \(\dfrac{2}{5}\)
x = \(\dfrac{-3}{20}\)
B(41 ) = { 0 , 41 , 82 , 123 , 164 , 205 , .... }
c ) 2.( 2x-\(\dfrac{1}{7}\) ) = 0
=> \(2\text{x}-\dfrac{1}{7}\) = 0
=> 2x = \(\dfrac{1}{7}\)
=> x = \(\dfrac{1}{14}\)
d) ( 3 - 2x ) (7x - \(\dfrac{1}{8}\) ) = 0
=> 3-2x = 0 hoặc 7x - \(\dfrac{1}{8}\) =0
* Nếu 3 - 2x = 0
=> 2x = 3
=> x = \(\dfrac{3}{2}\)
*Nếu 7x - \(\dfrac{1}{8}\) = 0
=> 7x = \(\dfrac{1}{8}\)
=> x = \(\dfrac{1}{56}\)
Vậy x = \(\dfrac{3}{2}\) hoặc x = \(\dfrac{1}{56}\)
2) Xác định giá trị của x để :
a) \(\dfrac{x+3}{x-5}\) có giá trị âm
=> x+3 phải là số nguyên dương
=> x-5 phải là số nguyên âm
b) Để ( \(x+\dfrac{2}{3}\) ) . ( x - 2 ) > 0
=> ( \(x+\dfrac{2}{3}\) ) và ( x-2 ) \(\in\) N*